Abstract
XNi1+ySn nanocomposites consisting of a XNiSn half-Heusler (HH) matrix with segregated XNi2Sn Full Heusler (FH) inclusions promise improvements in thermoelectric efficiencies. We extend recent research by reporting on TiNiMySn (0 ≤ y ≤ 1) nanocomposites with M = Co (3d9), Ni (3d10) and Cu (3d104s1). Neutron powder diffraction reveals that the Ni and Cu series produce a matrix of TiNiSn with nanosegregated TiNi2Sn and TiNi1+dCu1–dSn, respectively. For the Co series, the Co inserts into both phases to obtain a TiNi1–yCoySn matrix with nanosegregated TiNi2–yCoySn. Systematic changes in Seebeck coefficient (S) and electrical resistivity (ρ) are observed in all three series. For M = Ni, changes in S and ρ are attributed to in-gap states arising from the nanosegregation. The M = Co composites show a complex interplay between the hole doped TiNi1–yCoySn matrix and similar in-gap states, where the p- to n-type transition temperature increases but the maximum S remains unchanged at +30 μV K–1. The 4s1 electron for M = Cu is delocalized in the HH matrix, leading to metal-like ρ(T) and up to 100% improved thermoelectric power factors compared to TiNiSn (S2/ρ = 2 mW m–1 K–2 at 600–700 K for y = 0.025). These results broaden the range of segregated FH phases that could be used to enhance HH thermoelectric performance.
Original language | English |
---|---|
Pages (from-to) | 2449-2459 |
Number of pages | 11 |
Journal | Chemistry of Materials |
Volume | 27 |
Issue number | 7 |
Early online date | 11 Mar 2015 |
DOIs | |
Publication status | Published - 14 Apr 2015 |