TY - JOUR
T1 - Measurement and correlation of gas condensate relative permeability by the steady-state method
AU - Henderson, G. D.
AU - Danesh, A.
PY - 1996
Y1 - 1996
N2 - High pressure core flood experiments usin gas condensate fluids in long sandstone cores have been conducted. Steady-state relative permeability points were measured over a wide range of condensate to gas ratio's (CGR), with the velocity and interfacial tension (IFT) being varied between tests in order to observe the effect on relative permeability. The experimental procedures ensured that the fluid distribution in the cores was representative of gas condensate reservoirs. Hysteresis between drainage and imbibition during the steady-state measurements was also investigated, as was the repeatability of the data. A relative permeability rate effect for both gas and condensate phases was observed, with the relative permeability of both phases increasing with an increase in flow rate. The relative permeability rate effect was still evident as the IFT increased by an order of magnitude, with the relative permeability of the gas phase reducing more than the condensate phase. The influence of end effects was shown to be negligible at the IFT conditions used in the tests, with the Reynolds number indicating that flow was well within the so called laminar regime at all test conditions. The observed rate effect was contrary to that of the conventional non-Darcy flow where the effective permeability should decrease with increasing flow rate. A generalised correlation between relative permeability, velocity and IFT has been proposed, which should be more appropriate for condensing fluids than the conventional correlation. The results highlight the need for appropriate experimental methods and relative permeability relations where the distribution of the phases are representative of those in gas condensate reservoirs. This study will be particularly applicable to the vicinity of producing wells, where the rate effect on gas relative permeability can significantly affect well productivity. The findings provide previously unreported data on relative permeability and recovery of gas condensate fluids at realistic conditions. Copyright 1996, Society of Petroleum Engineers, Inc.
AB - High pressure core flood experiments usin gas condensate fluids in long sandstone cores have been conducted. Steady-state relative permeability points were measured over a wide range of condensate to gas ratio's (CGR), with the velocity and interfacial tension (IFT) being varied between tests in order to observe the effect on relative permeability. The experimental procedures ensured that the fluid distribution in the cores was representative of gas condensate reservoirs. Hysteresis between drainage and imbibition during the steady-state measurements was also investigated, as was the repeatability of the data. A relative permeability rate effect for both gas and condensate phases was observed, with the relative permeability of both phases increasing with an increase in flow rate. The relative permeability rate effect was still evident as the IFT increased by an order of magnitude, with the relative permeability of the gas phase reducing more than the condensate phase. The influence of end effects was shown to be negligible at the IFT conditions used in the tests, with the Reynolds number indicating that flow was well within the so called laminar regime at all test conditions. The observed rate effect was contrary to that of the conventional non-Darcy flow where the effective permeability should decrease with increasing flow rate. A generalised correlation between relative permeability, velocity and IFT has been proposed, which should be more appropriate for condensing fluids than the conventional correlation. The results highlight the need for appropriate experimental methods and relative permeability relations where the distribution of the phases are representative of those in gas condensate reservoirs. This study will be particularly applicable to the vicinity of producing wells, where the rate effect on gas relative permeability can significantly affect well productivity. The findings provide previously unreported data on relative permeability and recovery of gas condensate fluids at realistic conditions. Copyright 1996, Society of Petroleum Engineers, Inc.
UR - http://www.scopus.com/inward/record.url?scp=0030231119&partnerID=8YFLogxK
U2 - doi:10.2118/31065-PA
DO - doi:10.2118/31065-PA
M3 - Article
SN - 1930-0220
VL - 1
SP - 191
EP - 201
JO - SPE Journal
JF - SPE Journal
IS - 2
ER -