Mapping the mechanical properties of cobalt-based stellite alloys manufactured via blending

R. Ahmed, A. Fardan, S. Davies

Research output: Contribution to journalArticlepeer-review

162 Downloads (Pure)

Abstract

Stellite alloys have good wear resistance and maintain their strength up to ~ 600°C, making them suitable for various industrial applications like cutting tools and combustion engine parts. This investigation was aimed at i) manufacturing new Stellite alloy blends using powder metallurgy and ii) mathematically mapping hardness, yield strength, ductility and impact energy of base and alloy blends. Linear, exponential, polynomial approximations and dimensional analyses were conducted in this semi-empirical mathematical modelling approach. Base alloy compositions similar to Stellite 1, 4, 6, 12, 20 and 190 were used in this investigation to form new alloys via blends. The microstructure was analysed using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Mechanical performance of alloys was conducted using tensile, hardness and Charpy impact tests. MATLAB® coding was used for the development of property maps. This investigation indicates that hardness and yield strength can be linked to the wt.% composition of carbon and tungsten using linear approximation with a maximum variance of 5% and 20%, respectively. Elongation and carbide fraction showed a non-linear relationship with alloy composition. Impact energy was linked with elongation through polynomial approximation. A dimensional analysis was developed by interlinking carbide fraction, hardness, yield strength, and elongation to impact energy.
Original languageEnglish
Pages (from-to)2531-2560
Number of pages30
JournalAdvances in Materials and Processing Technologies
Volume10
Issue number3
Early online date2 Jun 2023
DOIs
Publication statusPublished - 2024

Keywords

  • Blending
  • Hiping
  • Mathematical model
  • Powder metallurgy
  • Stellite alloys
  • Structure-property relationships

ASJC Scopus subject areas

  • General Materials Science
  • Mechanics of Materials
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Mapping the mechanical properties of cobalt-based stellite alloys manufactured via blending'. Together they form a unique fingerprint.

Cite this