Magneto-optical spectroscopy of single charge-tunable InAs/GaAs quantum dots emitting at telecom wavelengths

Luca Sapienza*, Rima Al-Khuzheyri, Adetunmise C Dada, Andrew Griffiths, Edmund Clarke, Brian D Gerardot

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)
59 Downloads (Pure)


We report on the optical properties of single InAs/GaAs quantum dots emitting near the telecommunication O band, probed via Coulomb blockade and nonresonant photoluminescence spectroscopy, in the presence of external electric and magnetic fields. We extract the physical properties of the electron and hole wave functions, including the confinement energies, interaction energies, wave-function lengths, and g factors. For excitons, we measure the permanent dipole moment, polarizability, diamagnetic coefficient, and Zeeman splitting. The carriers are determined to be in the strong confinement regime. Large range electric field tunability, up to 7 meV, is demonstrated for excitons. We observe a large reduction, up to one order of magnitude, in the diamagnetic coefficient when rotating the magnetic field from Faraday to Voigt geometry due to the unique dot morphology. The complete spectroscopic characterization of the fundamental properties of long-wavelength dot-in-a-well structures provides insight for the applicability of quantum technologies based on quantum dots emitting at telecom wavelengths.

Original languageEnglish
Article number155301
Number of pages6
JournalPhysical Review B
Issue number15
Publication statusPublished - 1 Apr 2016


  • 1.3 MU-M


Dive into the research topics of 'Magneto-optical spectroscopy of single charge-tunable InAs/GaAs quantum dots emitting at telecom wavelengths'. Together they form a unique fingerprint.

Cite this