Machine learning enabled identification and real-time prediction of living plants’ stress using terahertz waves

Adnan Zahid, Kia Dashtipour, Hasan T. Abbas, Ismail Ben Mabrouk, Muath Al-Hasan, Aifeng Ren, Muhammad A. Imran, Akram Alomainy, Qammer H. Abbasi

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)
38 Downloads (Pure)


Considering the ongoing climate transformations, the appropriate and reliable phenotyping information of plant leaves is quite significant for early detection of disease, yield improvement. In real-life digital agricultural environment, the real-time prediction and identification of living plants leaves has immensely grown in recent years. Hence, cost-effective and automated and timely detection of plans species is vital for sustainable agriculture. This paper presents a novel, non-invasive method aiming to establish a feasible, and viable technique for the precise identification and observation of altering behaviour of plants species at cellular level for four consecutive days by integrating machine learning (ML) and THz with a swissto12 materials characterization kit (MCK) in the frequency range of 0.75 THz to 1.1 THz. For this purpose, measurements observations data of seven various living plants leaves were determined and incorporate three different ML algorithms such as random forest (RF), support vector machine, (SVM), and K-nearest neighbour (KNN). The results demonstrated that RF exhibited higher accuracy of 98.87% followed by KNN and SVM with an accuracy of 94.64% and 89.67%, respectively, for precise detection of different leaves by observing their morphological features. In addition, RF outperformed other classifiers for determination of water-stressed leaves and having an accuracy of 99.42%. It is envisioned that proposed study can be proven beneficial and vital in digital agriculture technology for the timely detection of plants species to significantly help in mitigate yield and economic losses and improve crops quality.
Original languageEnglish
Pages (from-to)1330-1339
Number of pages10
JournalDefence Technology
Issue number8
Early online date7 Jan 2022
Publication statusPublished - Aug 2022


  • Machine learning
  • Plants health
  • Terahertz sensing

ASJC Scopus subject areas

  • Computational Mechanics
  • Ceramics and Composites
  • Mechanical Engineering
  • Metals and Alloys


Dive into the research topics of 'Machine learning enabled identification and real-time prediction of living plants’ stress using terahertz waves'. Together they form a unique fingerprint.

Cite this