Low-dispersive glide-symmetric leaky-wave antenna at 60 GHz

Oskar Dahlberg, Elena Pucci, Lei Wang, Oscar Quevedo-Teruel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

In this work we demonstrate a method for producing low-loss, non-squinting, directive leaky-wave antennas (LWAs) for millimeter-wave frequencies. The scanning behaviour of the radiation pattern arises from the dispersive nature of the waveguide mode, which is leaking out when opening the wave guiding structure. We propose a method to cancel the dispersive behaviour, by allowing the leaked waves to refract in a dispersive prism-lens. The proposed method allows for fully metallic implementation of the antenna, resulting in low losses. Furthermore, high directivity is easily achieved with a simple feeding. The corresponding theory is outlined, and the proposed method is used to design an antenna operating at 60 GHz. The obtained bandwidth, with less than 1° beam scanning, is 20% in simulations and the realized gain of the antenna is 17 dB across the entire bandwidth. The design is proposed as an alternative to obtain high gain antennas for 5G applications, in which low losses and narrow beams are expected to be key features for mm-waves.
Original languageEnglish
Title of host publication2019 13th European Conference on Antennas and Propagation (EuCAP)
PublisherIEEE
ISBN (Electronic)9788890701887
Publication statusPublished - 20 Jun 2019

Fingerprint

Dive into the research topics of 'Low-dispersive glide-symmetric leaky-wave antenna at 60 GHz'. Together they form a unique fingerprint.

Cite this