Long-term Correlation Tracking using Multi-layer Hybrid Features in Dense Environments

Nathanael Lemessa Baisa, Deepayan Bhowmik, Andrew Michael Wallace

Research output: Contribution to conferencePaperpeer-review

Abstract

Tracking a target of interest in crowded environments is a challenging problem, not yet successfully addressed in the literature. In this paper, we propose a new long-term algorithm, learning a discriminative correlation filter and using an online classifier, to track a target of interest in dense, video sequences. First, we learn a translational correlation filter using a multi-layer hybrid of convolutional neural networks (CNN) and traditional hand-crafted features. We combine the advantages of both the lower convolutional layer which retains better spatial detail for precise localization, and the higher convolutional layer which encodes semantic information for handling appearance variations. This is integrated with traditional features formed from a histogram of oriented gradients (HOG) and color-naming. Second, we include a re-detection module for overcoming tracking failures due to long-term occlusions by training an incremental (online) SVM on the most confident frames using hand-engineered features. This re-detection module is activated only when the correlation response of the
object is below some pre-defined threshold to generate high score detection proposals. Finally, we incorporate a Gaussian mixture probability hypothesis density (GM-PHD) filter to temporally filter high score detection proposals generated from the learned online SVM to find the detection proposal with the maximum weight as the target position estimate by removing the other detection proposals as clutter. Extensive experiments on dense data sets show that our method significantly outperforms state-of-the-art methods
Original languageEnglish
Number of pages12
Publication statusPublished - Feb 2017
Event12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Porto, Portugal
Duration: 27 Feb 20172 Mar 2017
http://www.visapp.visigrapp.org/?y=2017

Conference

Conference12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
Abbreviated titleVISAPP2017
Country/TerritoryPortugal
CityPorto
Period27/02/172/03/17
Internet address

Fingerprint

Dive into the research topics of 'Long-term Correlation Tracking using Multi-layer Hybrid Features in Dense Environments'. Together they form a unique fingerprint.

Cite this