Linear non-adiabatic flow of an incompressible fluid in a porous layer – Review, adaptation and analysis of the available temperature models and solutions

Khafiz Muradov, David Davies

Research output: Contribution to journalArticle

Abstract

This article will concentrate on the problem of 2D heat losses from a reservoir experiencing linear flow of an incompressible fluid with a uniform heat generation in the reservoir. This problem can be instantly attributed to some specific, industrially relevant cases, e.g. estimation of the transient temperature distribution in a hydraulic fracture. However, its main value is that it is an integral part of the full, transient temperature solution for the flow of low compressible fluids (i.e. liquids and, sometimes, gases) into horizontal wells. The full solution is essential for temperature transient analysis in smart wells – a monitoring approach of great potential, but in early development stage.

This article will first discuss the problem of the temperature transient analysis, the flow conditions and the assumptions required to sufficiently simplify the thermal model so that existing solutions can be applied, and their applicability confirmed. Secondly, we will discuss some closely related problems whose solutions are already available, along with the modifications required to apply them to our case. The article continues with a numerical study that was carried out to check the applicability of the existing (modified) solutions. We will either include, or discuss, all the relevant physical phenomena affecting the flowing fluid (Joule–Thomson effect, transient thermal expansion, friction losses, and multi-dimensional heat losses). Finally, a novel approach for the calculation of semi-steady state heat losses from a reservoir to the surrounding formation will be presented. It is based on the solution to the “hot fluid injection” problem with appropriate corrections.
Original languageEnglish
Pages (from-to)1-14
Number of pages14
JournalJournal of Petroleum Science and Engineering
Volume86-87
Issue numbern/a
DOIs
Publication statusPublished - 1 May 2012

Fingerprint

Fluids
Heat losses
Transient analysis
Temperature
Horizontal wells
Heat generation
Thermal expansion
Temperature distribution
Hydraulics
Friction
Monitoring
Liquids
Gases

Cite this

@article{e59519fe82bd49039afb47e7d3aa2daa,
title = "Linear non-adiabatic flow of an incompressible fluid in a porous layer – Review, adaptation and analysis of the available temperature models and solutions",
abstract = "This article will concentrate on the problem of 2D heat losses from a reservoir experiencing linear flow of an incompressible fluid with a uniform heat generation in the reservoir. This problem can be instantly attributed to some specific, industrially relevant cases, e.g. estimation of the transient temperature distribution in a hydraulic fracture. However, its main value is that it is an integral part of the full, transient temperature solution for the flow of low compressible fluids (i.e. liquids and, sometimes, gases) into horizontal wells. The full solution is essential for temperature transient analysis in smart wells – a monitoring approach of great potential, but in early development stage. This article will first discuss the problem of the temperature transient analysis, the flow conditions and the assumptions required to sufficiently simplify the thermal model so that existing solutions can be applied, and their applicability confirmed. Secondly, we will discuss some closely related problems whose solutions are already available, along with the modifications required to apply them to our case. The article continues with a numerical study that was carried out to check the applicability of the existing (modified) solutions. We will either include, or discuss, all the relevant physical phenomena affecting the flowing fluid (Joule–Thomson effect, transient thermal expansion, friction losses, and multi-dimensional heat losses). Finally, a novel approach for the calculation of semi-steady state heat losses from a reservoir to the surrounding formation will be presented. It is based on the solution to the “hot fluid injection” problem with appropriate corrections.",
author = "Khafiz Muradov and David Davies",
year = "2012",
month = "5",
day = "1",
doi = "10.1016/j.petrol.2012.03.011",
language = "English",
volume = "86-87",
pages = "1--14",
journal = "Journal of Petroleum Science and Engineering",
issn = "0920-4105",
publisher = "Elsevier",
number = "n/a",

}

TY - JOUR

T1 - Linear non-adiabatic flow of an incompressible fluid in a porous layer – Review, adaptation and analysis of the available temperature models and solutions

AU - Muradov, Khafiz

AU - Davies, David

PY - 2012/5/1

Y1 - 2012/5/1

N2 - This article will concentrate on the problem of 2D heat losses from a reservoir experiencing linear flow of an incompressible fluid with a uniform heat generation in the reservoir. This problem can be instantly attributed to some specific, industrially relevant cases, e.g. estimation of the transient temperature distribution in a hydraulic fracture. However, its main value is that it is an integral part of the full, transient temperature solution for the flow of low compressible fluids (i.e. liquids and, sometimes, gases) into horizontal wells. The full solution is essential for temperature transient analysis in smart wells – a monitoring approach of great potential, but in early development stage. This article will first discuss the problem of the temperature transient analysis, the flow conditions and the assumptions required to sufficiently simplify the thermal model so that existing solutions can be applied, and their applicability confirmed. Secondly, we will discuss some closely related problems whose solutions are already available, along with the modifications required to apply them to our case. The article continues with a numerical study that was carried out to check the applicability of the existing (modified) solutions. We will either include, or discuss, all the relevant physical phenomena affecting the flowing fluid (Joule–Thomson effect, transient thermal expansion, friction losses, and multi-dimensional heat losses). Finally, a novel approach for the calculation of semi-steady state heat losses from a reservoir to the surrounding formation will be presented. It is based on the solution to the “hot fluid injection” problem with appropriate corrections.

AB - This article will concentrate on the problem of 2D heat losses from a reservoir experiencing linear flow of an incompressible fluid with a uniform heat generation in the reservoir. This problem can be instantly attributed to some specific, industrially relevant cases, e.g. estimation of the transient temperature distribution in a hydraulic fracture. However, its main value is that it is an integral part of the full, transient temperature solution for the flow of low compressible fluids (i.e. liquids and, sometimes, gases) into horizontal wells. The full solution is essential for temperature transient analysis in smart wells – a monitoring approach of great potential, but in early development stage. This article will first discuss the problem of the temperature transient analysis, the flow conditions and the assumptions required to sufficiently simplify the thermal model so that existing solutions can be applied, and their applicability confirmed. Secondly, we will discuss some closely related problems whose solutions are already available, along with the modifications required to apply them to our case. The article continues with a numerical study that was carried out to check the applicability of the existing (modified) solutions. We will either include, or discuss, all the relevant physical phenomena affecting the flowing fluid (Joule–Thomson effect, transient thermal expansion, friction losses, and multi-dimensional heat losses). Finally, a novel approach for the calculation of semi-steady state heat losses from a reservoir to the surrounding formation will be presented. It is based on the solution to the “hot fluid injection” problem with appropriate corrections.

U2 - 10.1016/j.petrol.2012.03.011

DO - 10.1016/j.petrol.2012.03.011

M3 - Article

VL - 86-87

SP - 1

EP - 14

JO - Journal of Petroleum Science and Engineering

JF - Journal of Petroleum Science and Engineering

SN - 0920-4105

IS - n/a

ER -