TY - JOUR
T1 - Life cycle analysis for bioethanol production from sugar beet crops in Greece
AU - Foteinis, Spyros
AU - Kouloumpis, Victor
AU - Tsoutsos, Theocharis
PY - 2011/9
Y1 - 2011/9
N2 - The main aim of this study is to evaluate whether the potential transformation of the existing sugar plants of Northern Greece to modern bioethanol plants, using the existing cultivations of sugar beet, would be an environmentally sustainable decision. Using Life Cycle Inventory and Impact Assessment, all processes for bioethanol production from sugar beets were analyzed, quantitative data were collected and the environmental loads of the final product (bioethanol) and of each process were estimated. The final results of the environmental impact assessment are encouraging since bioethanol production gives better results than sugar production for the use of the same quantity of sugar beets. If the old sugar plants were transformed into modern bioethanol plants, the total reduction of the environmental load would be, at least, 32.6% and a reduction of more than 2 tons of CO2e/sugar beet of ha cultivation could be reached. Moreover bioethanol production was compared to conventional fuel (gasoline), as well as to other types of biofuels (biodiesel from Greek cultivations).
AB - The main aim of this study is to evaluate whether the potential transformation of the existing sugar plants of Northern Greece to modern bioethanol plants, using the existing cultivations of sugar beet, would be an environmentally sustainable decision. Using Life Cycle Inventory and Impact Assessment, all processes for bioethanol production from sugar beets were analyzed, quantitative data were collected and the environmental loads of the final product (bioethanol) and of each process were estimated. The final results of the environmental impact assessment are encouraging since bioethanol production gives better results than sugar production for the use of the same quantity of sugar beets. If the old sugar plants were transformed into modern bioethanol plants, the total reduction of the environmental load would be, at least, 32.6% and a reduction of more than 2 tons of CO2e/sugar beet of ha cultivation could be reached. Moreover bioethanol production was compared to conventional fuel (gasoline), as well as to other types of biofuels (biodiesel from Greek cultivations).
U2 - 10.1016/j.enpol.2011.06.036
DO - 10.1016/j.enpol.2011.06.036
M3 - Article
SN - 0301-4215
VL - 39
SP - 4834
EP - 4841
JO - Energy Policy
JF - Energy Policy
IS - 9
ER -