TY - JOUR
T1 - Laser smoothing of binary gratings and multilevel etched structures in fused silica
AU - Wlodarczyk, Krystian Lukasz
AU - Mendez, Enrique
AU - Baker, Howard J.
AU - McBride, Roy
AU - Hall, Denis R.
PY - 2010/4/10
Y1 - 2010/4/10
N2 - We describe a promising approach to the processing of micro-optical components, where CO2 laser irradiation in raster scan is used to generate localized surface melting of binary or multilevel structures on silica, fabricated by conventional reactive-ion etching. The technique is shown to provide well-controlled local smoothing of step features by viscous flow under surface tension forces, relaxing the scale length of etch steps controllably between 1 and 30µm. Uniform treatment of extended areas is obtained by raster scanning with a power stabilized, Gaussian beam profile in the 0.5 to 1mm diameter range. For step heights of 1µm or less, the laser-induced relaxation is symmetric, giving softening of just the upper and lower corners at a threshold power of 4:7W, extending to symmetric long scale relaxation at 7:9W, with the upper limit set by the onset of significant vaporization. Some asymmetry of the relaxation is observed for 3µm high steps. Also, undercut steps or troughs produced by photolithography and etching of a deep 64 level multistep surface are found to have a polarization-dependent distortion after laser smoothing. The laser reflow process may be useful for improving the diffraction efficiency by suppressing high orders in binary diffractive optical elements, or for converting multilevel etched structures in fused silica into smoothed refractive surfaces in, for example, custom microlens arrays. © 2010 Optical Society of America.
AB - We describe a promising approach to the processing of micro-optical components, where CO2 laser irradiation in raster scan is used to generate localized surface melting of binary or multilevel structures on silica, fabricated by conventional reactive-ion etching. The technique is shown to provide well-controlled local smoothing of step features by viscous flow under surface tension forces, relaxing the scale length of etch steps controllably between 1 and 30µm. Uniform treatment of extended areas is obtained by raster scanning with a power stabilized, Gaussian beam profile in the 0.5 to 1mm diameter range. For step heights of 1µm or less, the laser-induced relaxation is symmetric, giving softening of just the upper and lower corners at a threshold power of 4:7W, extending to symmetric long scale relaxation at 7:9W, with the upper limit set by the onset of significant vaporization. Some asymmetry of the relaxation is observed for 3µm high steps. Also, undercut steps or troughs produced by photolithography and etching of a deep 64 level multistep surface are found to have a polarization-dependent distortion after laser smoothing. The laser reflow process may be useful for improving the diffraction efficiency by suppressing high orders in binary diffractive optical elements, or for converting multilevel etched structures in fused silica into smoothed refractive surfaces in, for example, custom microlens arrays. © 2010 Optical Society of America.
U2 - 10.1364/AO.49.001997
DO - 10.1364/AO.49.001997
M3 - Article
SN - 1559-128X
VL - 49
SP - 1997
EP - 2005
JO - Applied Optics
JF - Applied Optics
IS - 11
ER -