Abstract

We describe a laser-based process that allows the rapid manufacturing of custom microfluidic devices from transparent borosilicate glass slides, as well as an inexpensive method that enables the integration of commercially-available fiber optic pH and pressure sensors with microfluidic devices. For this purpose, we fabricated a microfluidic device with bespoke ports in the inlet and outlet channels that were deliberately designed to embed the sensors. The microfluidic device was manufactured using an ultrashort pulsed picosecond laser (TruMicro 5x50, Trumpf), which was used to: (a) generate a microfluidic pattern on the glass surface by ablating the material; (b) drill an inlet, outlet and sensor ports in a second glass plate; and (c) close the microfluidic pattern from the top with a second glass plate by creating weld seams at the glass-glass interface and permanently bonding the two glass slides together. The fiber optic sensors were attached to the microfluidic device using custom connectors that were manufactured from transparent UV-curable resin using a desktop, stereolithography 3D printer (Form 2, Formlabs). The pH sensors (“pH SensorPlugs”, manufactured by PreSens Precision Sensing GmgH) were tested with pH calibration buffers, while the pressure sensors (FOP-MIV, manufactured by FISO Technologies Inc.) were used to measure pressure directly in the ports during the flow of water through the microfluidic pattern, providing quantitative information on the dynamic events occurring in the microfluidic channels.
Original languageEnglish
Publication statusPublished - 24 Jun 2021
EventLasers in Manufacturing 2021 - Online
Duration: 21 Jun 202124 Jun 2021
https://www.conftool.org/lim2021/sessions.php

Conference

ConferenceLasers in Manufacturing 2021
Period21/06/2124/06/21
Internet address

Fingerprint

Dive into the research topics of 'Laser-manufactured glass microfluidic devices with embedded sensors'. Together they form a unique fingerprint.

Cite this