Isolation and characterization of novel hydrocarbon-degrading euryhaline consortia from crude oil and mangrove sediments

María Piedad Díaz, S. J W Grigson, Chris J. Peppiatt, J. Grant Burgess

    Research output: Contribution to journalArticlepeer-review

    87 Citations (Scopus)

    Abstract

    Two novel and versatile bacterial consortia were developed for the biodegradation of hydrocarbons. They were isolated from crude oil from the Cormorant Field in the North Sea (MPD-7) and from sediment associated with mangrove roots (MPD-M). The bacterial consortia were able to degrade both aliphatic and aromatic hydrocarbons in crude oils very effectively in seawater (35 g/L NaCl) and synthetic media containing 0 to 100 g/L NaCl (1.7 M). Salinities over twice that of normal seawater decreased the biodegradation rates. However, even at the highest salinity biodegradation was significant. Ratios of nC17 to pristane and nC18 to phytane were significantly lowered across the range of salinity. The lowest values were at 0 and 20 g/L (0.34 M). Phytane was degraded in preference to pristane. The degradation of these compounds was constant over the salinity range, with evidence of a slight increase for consortium MPD-M with increasing salinity. In general, the consortium isolated from mangrove root sediments was more efficient in metabolizing North Sea crude oil than the consortium isolated from Cormorant crude oil. The 5 strains that comprise MPD-M have been tentatively identified as species of the genera Marinobacter, Bacillus, and Erwinia. This is the first report of hydrocarbon degrading consortia isolated from crude oil and mangrove sediments that are capable of treating oily wastes over such a wide range of salinity.

    Original languageEnglish
    Pages (from-to)522-532
    Number of pages11
    JournalMarine Biotechnology
    Volume2
    Issue number6
    DOIs
    Publication statusPublished - 2000

    Keywords

    • Crude oil
    • Euryhaline consortia
    • High salinity
    • Hydrocarbon degradation
    • Mangrove sediment

    Fingerprint

    Dive into the research topics of 'Isolation and characterization of novel hydrocarbon-degrading euryhaline consortia from crude oil and mangrove sediments'. Together they form a unique fingerprint.

    Cite this