Abstract
The proliferation of residential building energy consumption and CO2 emissions has led many countries to develop buildings under the green rating systems umbrella. Many such buildings, however, fail to meet their designed energy performance, which is possibly attributable to occupant behaviour and unforeseen building usages. The research problem lies in the fact that occupant environmental behaviour is a complex socio-cultural-technical issue that needs to be addressed to achieve the desired energy savings. This study is novel as it investigates complex interrelationships between many observed and unobserved variables using data from four LEED certified multi-residential buildings in the United Arab Emirates. Structural Equation Modelling was used to analyse the impact of three unobserved/latent variables: occupant environmental Attitude, Knowledge and Behaviour (AKB) with respect to occupant energy consumption, based on measured/observed variables. Although our Goodness-of-Fit values indicated that we achieved a good model fit, the interrelationship between Knowledge and Behaviour (p = 0.557) and between Attitude and Behaviour (p = 0.931) was insignificant, as the p-values > 0.05. The key study outcomes were: (i) providing information alone could not motivate people towards environmentally friendly behaviour; (ii) even changes in their attitude, belief and lifestyle were not significantly related to their behaviour, as the interrelationships among occupant environmental AKB were not significant; and (iii) knowledge and attitude change should be combined with other motivational factors to trigger environmentally friendly actions and influence behaviour.
Original language | English |
---|---|
Article number | 3158 |
Journal | Energies |
Volume | 13 |
Issue number | 12 |
DOIs | |
Publication status | Published - 18 Jun 2020 |
Keywords
- Energy consumption
- Knowledge and Behaviour
- Structural Equation Modelling (SEM), occupant environmental attitude
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Energy (miscellaneous)
- Control and Optimization
- Electrical and Electronic Engineering