TY - JOUR
T1 - Interspecific and intraspecific foraging differentiation of neighbouring tropical seabirds
AU - Austin, R. E.
AU - De Pascalis, F.
AU - Votier, S. C.
AU - Haakonsson, J.
AU - Arnould, J. P. Y.
AU - Ebanks-Petrie, G.
AU - Newton, J.
AU - Harvey, J.
AU - Green, J. A.
N1 - Funding Information:
Authors wish to thank staff and volunteers of the Department of Environment, Cayman Islands Government who assisted with fieldwork and logistics, in particular Greg Morgan, Tanja Laaser, Mike and Meridith Guderian, Marique Cloete, Sophie O?Hehir, Tim Austin and Frederic Burton. Thanks to the National Trust of the Cayman Islands for providing permissions to work within the Booby Pond Nature Reserve, to Guy Harvey for assistance with fish identification, to Francesca Visalli for assistance with video data processing,?and to Paolo Zizioli for creating the bird images used in the article.
Funding Information:
This study was funded by a grant provided by the Darwin Initiative, UK Government (grant No. DPLUS044), and additional contributions from the Department of Environment, Cayman Islands Government, and the School of Life and Environmental Sciences, Deakin University.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/5/26
Y1 - 2021/5/26
N2 - Background: Social interactions, reproductive demands and intrinsic constraints all influence foraging decisions in animals. Understanding the relative importance of these factors in shaping the way that coexisting species within communities use and partition resources is central to knowledge of ecological and evolutionary processes. However, in marine environments, our understanding of the mechanisms that lead to and allow coexistence is limited, particularly in the tropics.Methods: Using simultaneous data from a suite of animal-borne data loggers (GPS, depth recorders, immersion and video), dietary samples and stable isotopes, we investigated interspecific and intraspecific differences in foraging of two closely-related seabird species (the red-footed booby and brown booby) from neighbouring colonies on the Cayman Islands in the Caribbean.Results: The two species employed notably different foraging strategies, with marked spatial segregation, but limited evidence of interspecific dietary partitioning. The larger-bodied brown booby foraged within neritic waters, with the smaller-bodied red-footed booby travelling further offshore. Almost no sex differences were detected in foraging behaviour of red-footed boobies, while male and female brown boobies differed in their habitat use, foraging characteristics and dietary contributions. We suggest that these behavioural differences may relate to size dimorphism and competition: In the small brown booby population (n < 200 individuals), larger females showed a higher propensity to remain in coastal waters where they experienced kleptoparasitic attacks from magnificent frigatebirds, while smaller males that were never kleptoparasitised travelled further offshore, presumably into habitats with lower kleptoparasitic pressure. In weakly dimorphic red-footed boobies, these differences are less pronounced. Instead, density-dependent pressures on their large population (n > 2000 individuals) and avoidance of kleptoparasitism may be more prevalent in driving movements for both sexes.Conclusions: Our results reveal how, in an environment where opportunities for prey diversification are limited, neighbouring seabird species segregate at-sea, while exhibiting differing degrees of sexual differentiation. While the mechanisms underlying observed patterns remain unclear, our data are consistent with the idea that multiple factors involving both conspecifics and heterospecifics, as well as reproductive pressures, may combine to influence foraging differences in these neighbouring tropical species.
AB - Background: Social interactions, reproductive demands and intrinsic constraints all influence foraging decisions in animals. Understanding the relative importance of these factors in shaping the way that coexisting species within communities use and partition resources is central to knowledge of ecological and evolutionary processes. However, in marine environments, our understanding of the mechanisms that lead to and allow coexistence is limited, particularly in the tropics.Methods: Using simultaneous data from a suite of animal-borne data loggers (GPS, depth recorders, immersion and video), dietary samples and stable isotopes, we investigated interspecific and intraspecific differences in foraging of two closely-related seabird species (the red-footed booby and brown booby) from neighbouring colonies on the Cayman Islands in the Caribbean.Results: The two species employed notably different foraging strategies, with marked spatial segregation, but limited evidence of interspecific dietary partitioning. The larger-bodied brown booby foraged within neritic waters, with the smaller-bodied red-footed booby travelling further offshore. Almost no sex differences were detected in foraging behaviour of red-footed boobies, while male and female brown boobies differed in their habitat use, foraging characteristics and dietary contributions. We suggest that these behavioural differences may relate to size dimorphism and competition: In the small brown booby population (n < 200 individuals), larger females showed a higher propensity to remain in coastal waters where they experienced kleptoparasitic attacks from magnificent frigatebirds, while smaller males that were never kleptoparasitised travelled further offshore, presumably into habitats with lower kleptoparasitic pressure. In weakly dimorphic red-footed boobies, these differences are less pronounced. Instead, density-dependent pressures on their large population (n > 2000 individuals) and avoidance of kleptoparasitism may be more prevalent in driving movements for both sexes.Conclusions: Our results reveal how, in an environment where opportunities for prey diversification are limited, neighbouring seabird species segregate at-sea, while exhibiting differing degrees of sexual differentiation. While the mechanisms underlying observed patterns remain unclear, our data are consistent with the idea that multiple factors involving both conspecifics and heterospecifics, as well as reproductive pressures, may combine to influence foraging differences in these neighbouring tropical species.
KW - Brown booby
KW - Competition
KW - Foraging ecology
KW - Red-footed booby
KW - Resource partitioning
UR - http://www.scopus.com/inward/record.url?scp=85107191726&partnerID=8YFLogxK
U2 - 10.1186/s40462-021-00251-z
DO - 10.1186/s40462-021-00251-z
M3 - Article
C2 - 34039419
SN - 2051-3933
VL - 9
JO - Movement Ecology
JF - Movement Ecology
M1 - 27
ER -