Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features

Hosameldin Ahmed, M. L. Dennis Wong, Asoke K. Nandi

Research output: Contribution to journalArticle

54 Citations (Scopus)
361 Downloads (Pure)

Abstract

Condition classification of rolling element bearings in rotating machines is important to prevent the breakdown of industrial machinery. A considerable amount of literature has been published on bearing faults classification. These studies aim to determine automatically the current status of a roller element bearing. Of these studies, methods based on compressed sensing (CS) have received some attention recently due to their ability to allow one to sample below the Nyquist sampling rate. This technology has many possible uses in machine condition monitoring and has been investigated as a possible approach for fault detection and classification in the compressed domain, i.e., without reconstructing the original signal. However, previous CS based methods have been found to be too weak for highly compressed data. The present paper explores computationally, for the first time, the effects of sparse autoencoder based over-complete sparse representations on the classification performance of highly compressed measurements of bearing vibration signals. For this study, the CS method was used to produce highly compressed measurements of the original bearing dataset. Then, an effective deep neural network (DNN) with unsupervised feature learning algorithm based on sparse autoencoder is used for learning over-complete sparse representations of these compressed datasets. Finally, the fault classification is achieved using two stages, namely, pre-training classification based on stacked autoencoder and softmax regression layer form the deep net stage (the first stage), and re-training classification based on backpropagation (BP) algorithm forms the fine-tuning stage (the second stage). The experimental results show that the proposed method is able to achieve high levels of accuracy even with extremely compressed measurements compared with the existing techniques.
Original languageEnglish
Pages (from-to)459–477
Number of pages19
JournalMechanical Systems and Signal Processing
Volume99
Early online date4 Jul 2017
DOIs
Publication statusPublished - 15 Jan 2018

ASJC Scopus subject areas

  • Signal Processing

Fingerprint Dive into the research topics of 'Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features'. Together they form a unique fingerprint.

  • Cite this