Intelligent Bearing Fault Diagnosis Based on Feature Fusion of One-Dimensional Dilated CNN and Multi-Domain Signal Processing

Kaitai Dong, Ashkan Lotfipoor

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)
34 Downloads (Pure)

Abstract

Finding relevant features that can represent different types of faults under a noisy environment is the key to practical applications of intelligent fault diagnosis. However, high classification accuracy cannot be achieved with only a few simple empirical features, and advanced feature engineering and modelling necessitate extensive specialised knowledge, resulting in restricted widespread use. This paper has proposed a novel and efficient fusion method, named MD-1d-DCNN, that combines statistical features from multiple domains and adaptive features retrieved using a one-dimensional dilated convolutional neural network. Moreover, signal processing techniques are utilised to uncover statistical features and realise the general fault information. To offset the negative influence of noise in signals and achieve high accuracy of fault diagnosis in noisy settings, 1d-DCNN is adopted to extract more dispersed and intrinsic fault-associated features, while also preventing the model from overfitting. In the end, fault classification based on fusion features is accomplished by the usage of fully connected layers. Two bearing datasets containing varying amounts of noise are used to verify the effectiveness and robustness of the suggested approach. The experimental results demonstrate MD-1d-DCNN’s superior anti-noise capability. When compared to other benchmark models, the proposed method performs better at all noise levels.
Original languageEnglish
Article number5607
JournalSensors
Volume23
Issue number12
DOIs
Publication statusPublished - 15 Jun 2023

Keywords

  • anti-noise ability
  • dilated convolution neural network
  • fault diagnosis
  • feature extraction
  • signal processing

ASJC Scopus subject areas

  • Analytical Chemistry
  • Information Systems
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Intelligent Bearing Fault Diagnosis Based on Feature Fusion of One-Dimensional Dilated CNN and Multi-Domain Signal Processing'. Together they form a unique fingerprint.

Cite this