TY - JOUR
T1 - Integrated support vector regression and an improved particle swarm optimization-based model for solar radiation prediction
AU - Ghazvinian, Hamidreza
AU - Mousavi, Sayed Farhad
AU - Karami, Hojat
AU - Farzin, Saeed
AU - Ehteram, Mohammad
AU - Hossain, Md Shabbir
AU - Fai, Chow Ming
AU - Hashim, Huzaifa Bin
AU - Singh, Vijay P.
AU - Ros, Faizah Che
AU - Ahmed, Ali Najah
AU - Afan, Haitham Abdulmohsin
AU - Lai, Sai Hin
AU - El-Shafie, Ahmed
PY - 2019/5/31
Y1 - 2019/5/31
N2 - Solar energy is a major type of renewable energy, and its estimation is important for decision- makers. This study introduces a new prediction model for solar radiation based on support vector regression (SVR) and the improved particle swarm optimization (IPSO) algorithm. The new version of algorithm attempts to enhance the global search ability for the PSO. In practice, the SVR method has a few parameters that should be determined through a trial-and-error procedure while developing the prediction model. This procedure usually leads to non-optimal choices for these parameters and, hence, poor prediction accuracy. Therefore, there is a need to integrate the SVR model with an optimization algorithm to achieve optimal choices for these parameters. Thus, the IPSO algorithm, as an optimizer is integrated with SVR to obtain optimal values for the SVR parameters. To examine the proposed model, two solar radiation stations, Adana, Antakya and Konya, in Turkey, are considered for this study. In addition, different models have been tested for this prediction, namely, the M5 tree model (M5T), genetic programming (GP), SVR integrated with four different optimization algorithms SVR-PSO, SVR-IPSO, Genetic Algorithm (SVR-GA), FireFly Algorithm (SVR-FFA) and the multivariate adaptive regression (MARS) model. The sensitivity analysis is performed to achieve the highest accuracy level of the prediction by choosing different input parameters. Several performance measuring indices have been considered to examine the efficiency of all the prediction methods. The results show that SVR-IPSO outperformed M5T and MARS.
AB - Solar energy is a major type of renewable energy, and its estimation is important for decision- makers. This study introduces a new prediction model for solar radiation based on support vector regression (SVR) and the improved particle swarm optimization (IPSO) algorithm. The new version of algorithm attempts to enhance the global search ability for the PSO. In practice, the SVR method has a few parameters that should be determined through a trial-and-error procedure while developing the prediction model. This procedure usually leads to non-optimal choices for these parameters and, hence, poor prediction accuracy. Therefore, there is a need to integrate the SVR model with an optimization algorithm to achieve optimal choices for these parameters. Thus, the IPSO algorithm, as an optimizer is integrated with SVR to obtain optimal values for the SVR parameters. To examine the proposed model, two solar radiation stations, Adana, Antakya and Konya, in Turkey, are considered for this study. In addition, different models have been tested for this prediction, namely, the M5 tree model (M5T), genetic programming (GP), SVR integrated with four different optimization algorithms SVR-PSO, SVR-IPSO, Genetic Algorithm (SVR-GA), FireFly Algorithm (SVR-FFA) and the multivariate adaptive regression (MARS) model. The sensitivity analysis is performed to achieve the highest accuracy level of the prediction by choosing different input parameters. Several performance measuring indices have been considered to examine the efficiency of all the prediction methods. The results show that SVR-IPSO outperformed M5T and MARS.
UR - http://www.scopus.com/inward/record.url?scp=85066505795&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0217634
DO - 10.1371/journal.pone.0217634
M3 - Article
C2 - 31150467
AN - SCOPUS:85066505795
SN - 1932-6203
VL - 14
JO - PLoS ONE
JF - PLoS ONE
IS - 5
M1 - e0217634
ER -