Abstract
Layered cobalt oxide perovskites are important mixed ionic and electronic conductors. Here, we investigate LaBaCo2O6−δ using in situ neutron powder diffraction. This composition is unique because it can be prepared in cubic, layered, and vacancy-ordered forms. Thermogravimetric analysis and diffraction reveal that layered and disordered samples have near-identical oxygen cycling capacities. Migration barriers for oxide ion conduction calculated using the bond valence site energy approach vary from Eb ∼ 2.8 eV for the cubic perovskite to Eb ∼ 1.5 eV for 2D transport in the layered system. Vacancy-ordered superstructures were observed at low temperatures, 350–400 °C for δ = 0.25 and δ = 0.5. The vacancy ordering at δ = 0.5 is different from the widely reported structure and involves oxygen sites in both CoO2 and LaO planes. Vacancy ordering leads to the emergence of additional migration pathways with low-energy barriers, for example, 1D channels with Eb = 0.5 eV and 3D channels with Eb = 2.2 eV. The emergence of these channels is caused by the strong orthorhombic distortion of the crystal structure. These results demonstrate that there is potential scope to manipulate ionic transport in vacancy-ordered LnBaCo2O6−δ perovskites with reduced symmetry.
Original language | English |
---|---|
Pages (from-to) | 1191-1202 |
Number of pages | 12 |
Journal | Chemistry of Materials |
Volume | 34 |
Issue number | 3 |
Early online date | 27 Jan 2022 |
DOIs | |
Publication status | Published - 8 Feb 2022 |
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering
- Materials Chemistry