Influences and drivers of woody debris movement in urban watercourses

Deonie Anthea Allen*, Scott Arthur, Heather Haynes, Stephen George Wallis, Nicholas Paul Wallerstein

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)
260 Downloads (Pure)


It is recognised that the blockage of culverts by woody debris can result in an increased risk of infrastructure damage and flooding. To date, debris transport analysis has focused on regional fluvial systems and large woody debris, both in flume and field experiments. Given the social and economic risk associated with urban flooding, and as urban drainage design shifts away from subsurface piped network reliance, there is an increasing need to understand debris movement in urban watercourses. The prediction of urban watercourse small woody debris (SWD) movement, both quantity and risk, has undergone only limited analysis predominantly due to lack of field data. This paper describes the development of a methodology to enable the collection of accurate and meaningful SWD residency and transportation data from watercourses. The presented research examines the limitations and effective function of PIT tag technology to collect SWD transport data in the field appropriate for risk and prediction analysis. Passive integrated transponder (PIT) technology provides a method to collect debris transport data within the urban environment. In this study, the tags are installed within small woody debris and released at known locations into a small urban natural watercourse enabling monitoring of movement and travel time. SWD velocity and detention are collated with solute time of travel, watercourse and point flow characteristics to identify the relationships between these key variables. The work presented tests three hypotheses: firstly, that the potential for unobstructed or un-detained SWD movement increases with flow velocity and water level. Secondly, that SWD travel distance, and the resistance forces along this travel path, influence SWD transport potential. Thirdly, the relationship between SWD and channel dimensions is examined with the aim of advancing representative debris transport prediction modelling.

Original languageEnglish
Pages (from-to)1512-1521
Number of pages10
JournalScience China Technological Sciences
Issue number8
Publication statusPublished - Aug 2014


  • blockage
  • prediction
  • solute dye tracing
  • urban flood risk
  • woody debris transport

ASJC Scopus subject areas

  • General Engineering
  • General Materials Science


Dive into the research topics of 'Influences and drivers of woody debris movement in urban watercourses'. Together they form a unique fingerprint.

Cite this