Indian Ocean glacial deoxygenation and respired carbon accumulation during mid-late Quaternary ice ages

Liao Chang*, Babette A. A. Hoogakker, David Heslop, Xiang Zhao, Andrew P. Roberts, Patrick De Deckker, Pengfei Xue, Zhaowen Pei, Fan Zeng, Rong Huang, Baoqi Huang, Shishun Wang, Thomas A. Berndt, Melanie Leng, Jan-Berend W. Stuut, Richard J. Harrison

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
9 Downloads (Pure)


Reconstructions of ocean oxygenation are critical for understanding the role of respired carbon storage in regulating atmospheric CO2. Independent sediment redox proxies are essential to assess such reconstructions. Here, we present a long magnetofossil record from the eastern Indian Ocean in which we observe coeval magnetic hardening and enrichment of larger, more elongated, and less oxidized magnetofossils during glacials compared to interglacials over the last ~900 ka. Our multi-proxy records of redox-sensitive magnetofossils, trace element concentrations, and benthic foraminiferal Δδ13C consistently suggest a recurrence of lower O2 in the glacial Indian Ocean over the last 21 marine isotope stages, as has been reported for the Atlantic and Pacific across the last glaciation. Consistent multi-proxy documentation of this repeated oxygen decline strongly supports the hypothesis that increased Indian Ocean glacial carbon storage played a significant role in atmospheric CO2 cycling and climate change over recent glacial/interglacial timescales.
Original languageEnglish
Article number4841
JournalNature Communications
Publication statusPublished - 10 Aug 2023

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)


Dive into the research topics of 'Indian Ocean glacial deoxygenation and respired carbon accumulation during mid-late Quaternary ice ages'. Together they form a unique fingerprint.

Cite this