Abstract
The high-nickel cathode material of LiNi0.8Co0.15Al0.05O2 (LNCA) has a prospective application for lithium-ion batteries due to the high capacity and low cost. However, the side reaction between the electrolyte and the electrode seriously affects the cycling stability of lithium-ion batteries. In this work, Ni2+ preoxidation and the optimization of calcination temperature were carried out to reduce the cation mixing of LNCA, and solid-phase Al-doping improved the uniformity of element distribution and the orderliness of the layered structure. In addition, the surface of LNCA was homogeneously modified with ZnO coating by a facile wet-chemical route. Compared to the pristine LNCA, the optimized ZnO-coated LNCA showed excellent electrochemical performance with the first discharge-specific capacity of 187.5 mA h g-1, and the capacity retention of 91.3% at 0.2C after 100 cycles. The experiment demonstrated that the improved electrochemical performance of ZnO-coated LNCA is assigned to the surface coating of ZnO which protects LNCA from being corroded by the electrolyte during cycling.
Original language | English |
---|---|
Pages (from-to) | 210-220 |
Number of pages | 11 |
Journal | Nanotechnology Reviews |
Volume | 10 |
Issue number | 1 |
DOIs | |
Publication status | Published - 20 Apr 2021 |
Keywords
- cathode material
- LiNiCoAlO
- lithium-ion battery
- ZnO coating
ASJC Scopus subject areas
- Biotechnology
- Medicine (miscellaneous)
- Materials Science (miscellaneous)
- Energy Engineering and Power Technology
- Engineering (miscellaneous)
- Process Chemistry and Technology