Abstract
Injecting CO2 into deep saline formations represents an important component of many greenhouse gas reduction strategies for the future. A number of authors have posed concern over the thousands of injection wells likely to be needed. However, a more important criterion than the number of wells is whether the total cost of storing the CO2 is market bearable. Previous studies have sought to determine the number of injection wells required to achieve a specified storage target. Here an alternative methodology is presented whereby we specify a maximum allowable cost (MAC) per tonne of CO2 stored, a priori, and determine the corresponding potential operational storage capacity. The methodology takes advantage of an analytical solution for pressure build-up during CO2 injection into a cylindrical saline formation, accounting for two-phase flow, brine evaporation and salt precipitation around the injection well. The methodology is applied to 375 saline formations from the UK Continental Shelf. Parameter uncertainty is propagated using Monte Carlo simulation with 10,000 realisations for each formation. The results show that MAC affects both the magnitude and spatial distribution of potential operational storage capacity on a national scale. Different storage prospects can appear more or less attractive depending on the MAC scenario considered. It is shown that, under high well injection rate scenarios with relatively low cost, there is adequate operational storage capacity for the equivalent of 40 years of UK CO2 emissions.
Original language | English |
---|---|
Pages (from-to) | 13510-13518 |
Number of pages | 9 |
Journal | Environmental Science and Technology |
Volume | 49 |
Issue number | 22 |
Early online date | 20 Oct 2015 |
DOIs | |
Publication status | Published - 17 Nov 2015 |
ASJC Scopus subject areas
- General Chemistry
- Environmental Chemistry
Fingerprint
Dive into the research topics of 'Impact of Maximum Allowable Cost on CO2 Storage Capacity in Saline Formations'. Together they form a unique fingerprint.Profiles
-
Eric James Mackay
- School of Energy, Geoscience, Infrastructure and Society, Institute for GeoEnergy Engineering - Professor
- School of Energy, Geoscience, Infrastructure and Society - Professor
Person: Academic (Research & Teaching)