Abstract
The application of TiO2 catalyst for an industrial water treatment process is still limited due to its poor reusability, low oxidation efficiency and UV light use. Taking these challenges as the objective of this study, we integrated particle impregnation with nitrogen-doping methods to hybrid nitrogen doped TiO2 nanoparticles with kaolinite (NTK) as the photocatalyst for water treatment. SEM/TEM, XPS and XRD results revealed that the doped nitrogen in the NTK particle inclined toward interstitial, and the TiO2 nanocrystals were hybridised into the layered kaolinite minerals. Kaolinite was found to be an excellent TiO2 nanocatalyst supporter, providing promising adsorption transitions to not only sensitise TiO2 nanocrystals, but also enhance their photocatalytic oxidation capacity and recoverability. Kinetic studies showed that the NTK catalysts demonstrated a superior interfacial oxidation and photocatalytic degradation ability under visible light irradiation. Importantly, the NTK catalysts could be easily recovered for reuse with stable photo-degradation performance in a semi-continuous photoreactor process. The high degradation capacity, reusability and visible light accessibility of the NTK catalysts make the NTK-catalysed technology promising for industrial applications.
Original language | English |
---|---|
Pages (from-to) | 939-947 |
Number of pages | 9 |
Journal | Chemical Engineering Journal |
Volume | 279 |
DOIs | |
Publication status | Published - 1 Nov 2015 |
Keywords
- Hybrid nanocatalysts
- Nitrogen doping
- Photocatalytic degradation
- Semi-continuous photoreactor
- Titanium dioxide
ASJC Scopus subject areas
- General Chemistry
- Environmental Chemistry
- General Chemical Engineering
- Industrial and Manufacturing Engineering