Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping

Junlei Wang, Shanghao Gu, Chengyun Zhang, Guobiao Hu, Geng Chen, Kai Yang, Hang Li, Yuyang Lai, Grzegorz Litak, Daniil Yurchenko

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

This paper presents a hybrid piezoelectric wind energy scavenger with different cross-sectioned bluff bodies, to enhance the energy scavenging performance by coupling both the vortex-induced vibrations (VIV) and galloping phenomena. Theoretical, experimental and computational fluid dynamics (CFD) studies are conducted to investigate the energy scavenger performance with three combinations of the circular and square cross-sections corresponding to the different values of an attack angle. Both theoretical analysis and experimental results reveal that the aerodynamic coefficients (Strouhal number and galloping force coefficients) play key roles in the energy scavenging characteristics. Aerodynamic coefficients for the distinct bluff-body cross-sections and attack angles can significantly affect the energy scavenger performance. Experimental results show that compared to the conventional galloping-based energy scavenger and VIV-based energy scavenger, the piezoelectric wind energy scavenger with an appropriate cross-sectioned bluff body for an appropriate attack angle can bring together the advantages of both VIV and galloping. These benefits can lead to significant performance improvement for a wide range of wind speeds (e.g. up to 71% improvement of the maximum voltage output). Afterward, CFD studies of the vortex shedding mechanism around the bluff body are performed to interpret the observed performance improvement. The CFD studies corroborate that the appropriately designed cross-section and selected attack angles of the bluff body improve the nearby airflow feature, which strengthens the vibration of the piezoelectric wind energy scavenger, leading to the energy scavenging enhancement.
Original languageEnglish
Article number112835
JournalEnergy Conversion and Management
Volume213
Early online date22 Apr 2020
DOIs
Publication statusPublished - 1 Jun 2020

Fingerprint Dive into the research topics of 'Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping'. Together they form a unique fingerprint.

  • Cite this