Horizon constraints on holographic Green’s functions

Mike Blake, Richard A. Davison*, David Vegh

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

65 Citations (Scopus)
65 Downloads (Pure)

Abstract

We explore a new class of general properties of thermal holographic Green’s functions that can be deduced from the near-horizon behaviour of classical perturbations in asymptotically anti-de Sitter spacetimes. We show that at negative imaginary Matsubara frequencies and appropriate complex values of the wavenumber the retarded Green’s functions of generic operators are not uniquely defined, due to the lack of a unique ingoing solution for the bulk perturbations. From a boundary perspective these ‘pole-skipping’ points correspond to locations in the complex frequency and momentum planes at which a line of poles of the retarded Green’s function intersects with a line of zeroes. As a consequence the dispersion relations of collective modes in the boundary theory at energy scales ω ∼ T are directly constrained by the bulk dynamics near the black-brane horizon. For the case of conserved U (1) current and energy-momentum tensor operators we give examples where the dispersion relations of hydrodynamic modes pass through a succession of pole- skipping points as real wavenumber is increased. We discuss implications of our results for transport, hydrodynamics and quantum chaos in holographic systems.

Original languageEnglish
Article number77
JournalJournal of High Energy Physics
Volume2020
Issue number1
DOIs
Publication statusPublished - 14 Jan 2020

Keywords

  • AdS-CFT Correspondence
  • Gauge-gravity correspondence
  • Holography and condensed matter physics (AdS/CMT)
  • Holography and quark-gluon plasmas

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Horizon constraints on holographic Green’s functions'. Together they form a unique fingerprint.

Cite this