Histidine 61: an important heme ligand in the soluble fumarate reductase from Shewanella frigidimarina

Emma L Rothery, Christopher G Mowat, Caroline S Miles, Malcolm D Walkinshaw, Graeme A Reid, Stephen K Chapman

    Research output: Contribution to journalArticle

    Abstract

    An examination of the X-ray structure of the soluble fumarate reductase from Shewanella frigidimarina [Taylor, P., Pealing, S. L., Reid, G. A., Chapman, S. K., and Walkinshaw, M. D. (1999) Nat. Struct. Biol. 6, 1108-1112] shows the presence of four, bis-His-ligated, c-type hemes and one flavin adenine dinucleotide, FAD. The heme groups provide a "molecular wire" for the delivery of electrons to the FAD. Heme IV is closest to the FAD (7.4 A from heme methyl to FAD C7), and His61, a ligand to heme IV, is also close (8.4 A to FAD C7). Electron delivery to the FAD from the heme groups must proceed via heme IV, as hemes I-III are too far from the FAD for feasible electron transfer. To examine the importance of heme IV and its ligation for enzyme function, we have substituted His61 with both methionine and alanine. Here we describe the crystallographic, kinetic, and electrochemical characterization of the H61M and H61A mutant forms of the Shewanella fumarate reductase. The crystal structures of these mutant forms of the enzyme have been determined to 2.1 and 2.2 A resolution, respectively. Substitution of His61 with alanine results in heme IV having only one protein ligand (His86), the sixth coordination position being occupied by an acetate ion derived from the crystal cryoprotectant solution. In the structure of the H61M enzyme, Met61 is found not to ligate the heme iron, a role that is taken by a water molecule. Apart from these features, there are no significant structural alterations as a result of either substitution. Both the H61M-Fcc(3) and H61A-Fcc(3) mutant enzymes are catalytically active but exhibit marked decreases in the value of k(cat) for fumarate reduction with respect to that of the wild type (5- and 10-fold lower, respectively). There is also a significant shift in the pK(a) values for the mutant enzymes, from 7.5 for the wild type to 8.26 for H61M and 9.29 for H61A. The fumarate reductase activity of both mutant enzymes can be recovered to approximately 80% of that seen for the wild type by the addition of exogenous imidazole. In the case of H61A, recovery of activity is also accompanied by a shift of the pK(a) from 9.29 to 7.46 (close, and within experimental error, to that for the wild type). Pre-steady-state kinetic measurements show clearly that rate constants for the fumarate dependent reoxidation of the heme groups are adversely affected by the mutations. The solvent isotope effect for fumarate reduction in the wild-type enzyme has a value of 8.0, indicating that proton delivery is substantially rate limiting. This value falls to 5.6 and 2.2 for the H61M and H61A mutants, respectively, indicating that electron transfer, rather than proton transfer, is becoming more rate-limiting in the mutant enzymes.
    Original languageEnglish
    Pages (from-to)13160-13169
    Number of pages10
    JournalBiochemistry
    Volume42
    Issue number45
    DOIs
    Publication statusPublished - 18 Nov 2003

    Fingerprint

    Succinate Dehydrogenase
    Heme
    Histidine
    Flavin-Adenine Dinucleotide
    Ligands
    Enzymes
    Fumarates
    Electrons
    Alanine
    Substitution reactions
    Kinetics
    Proton transfer
    Isotopes
    Methionine
    Protons
    Rate constants
    Acetates
    Iron
    Crystal structure
    Wire

    Cite this

    Rothery, E. L., Mowat, C. G., Miles, C. S., Walkinshaw, M. D., Reid, G. A., & Chapman, S. K. (2003). Histidine 61: an important heme ligand in the soluble fumarate reductase from Shewanella frigidimarina. Biochemistry, 42(45), 13160-13169. https://doi.org/10.1021/bi030159z
    Rothery, Emma L ; Mowat, Christopher G ; Miles, Caroline S ; Walkinshaw, Malcolm D ; Reid, Graeme A ; Chapman, Stephen K. / Histidine 61 : an important heme ligand in the soluble fumarate reductase from Shewanella frigidimarina. In: Biochemistry. 2003 ; Vol. 42, No. 45. pp. 13160-13169.
    @article{a7d78dd438db4e509c40fa7900abe3d3,
    title = "Histidine 61: an important heme ligand in the soluble fumarate reductase from Shewanella frigidimarina",
    abstract = "An examination of the X-ray structure of the soluble fumarate reductase from Shewanella frigidimarina [Taylor, P., Pealing, S. L., Reid, G. A., Chapman, S. K., and Walkinshaw, M. D. (1999) Nat. Struct. Biol. 6, 1108-1112] shows the presence of four, bis-His-ligated, c-type hemes and one flavin adenine dinucleotide, FAD. The heme groups provide a {"}molecular wire{"} for the delivery of electrons to the FAD. Heme IV is closest to the FAD (7.4 A from heme methyl to FAD C7), and His61, a ligand to heme IV, is also close (8.4 A to FAD C7). Electron delivery to the FAD from the heme groups must proceed via heme IV, as hemes I-III are too far from the FAD for feasible electron transfer. To examine the importance of heme IV and its ligation for enzyme function, we have substituted His61 with both methionine and alanine. Here we describe the crystallographic, kinetic, and electrochemical characterization of the H61M and H61A mutant forms of the Shewanella fumarate reductase. The crystal structures of these mutant forms of the enzyme have been determined to 2.1 and 2.2 A resolution, respectively. Substitution of His61 with alanine results in heme IV having only one protein ligand (His86), the sixth coordination position being occupied by an acetate ion derived from the crystal cryoprotectant solution. In the structure of the H61M enzyme, Met61 is found not to ligate the heme iron, a role that is taken by a water molecule. Apart from these features, there are no significant structural alterations as a result of either substitution. Both the H61M-Fcc(3) and H61A-Fcc(3) mutant enzymes are catalytically active but exhibit marked decreases in the value of k(cat) for fumarate reduction with respect to that of the wild type (5- and 10-fold lower, respectively). There is also a significant shift in the pK(a) values for the mutant enzymes, from 7.5 for the wild type to 8.26 for H61M and 9.29 for H61A. The fumarate reductase activity of both mutant enzymes can be recovered to approximately 80{\%} of that seen for the wild type by the addition of exogenous imidazole. In the case of H61A, recovery of activity is also accompanied by a shift of the pK(a) from 9.29 to 7.46 (close, and within experimental error, to that for the wild type). Pre-steady-state kinetic measurements show clearly that rate constants for the fumarate dependent reoxidation of the heme groups are adversely affected by the mutations. The solvent isotope effect for fumarate reduction in the wild-type enzyme has a value of 8.0, indicating that proton delivery is substantially rate limiting. This value falls to 5.6 and 2.2 for the H61M and H61A mutants, respectively, indicating that electron transfer, rather than proton transfer, is becoming more rate-limiting in the mutant enzymes.",
    author = "Rothery, {Emma L} and Mowat, {Christopher G} and Miles, {Caroline S} and Walkinshaw, {Malcolm D} and Reid, {Graeme A} and Chapman, {Stephen K}",
    note = "M1 - Article",
    year = "2003",
    month = "11",
    day = "18",
    doi = "10.1021/bi030159z",
    language = "English",
    volume = "42",
    pages = "13160--13169",
    journal = "Biochemistry",
    issn = "0006-2960",
    publisher = "American Chemical Society",
    number = "45",

    }

    Rothery, EL, Mowat, CG, Miles, CS, Walkinshaw, MD, Reid, GA & Chapman, SK 2003, 'Histidine 61: an important heme ligand in the soluble fumarate reductase from Shewanella frigidimarina', Biochemistry, vol. 42, no. 45, pp. 13160-13169. https://doi.org/10.1021/bi030159z

    Histidine 61 : an important heme ligand in the soluble fumarate reductase from Shewanella frigidimarina. / Rothery, Emma L; Mowat, Christopher G; Miles, Caroline S; Walkinshaw, Malcolm D; Reid, Graeme A; Chapman, Stephen K.

    In: Biochemistry, Vol. 42, No. 45, 18.11.2003, p. 13160-13169.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - Histidine 61

    T2 - an important heme ligand in the soluble fumarate reductase from Shewanella frigidimarina

    AU - Rothery, Emma L

    AU - Mowat, Christopher G

    AU - Miles, Caroline S

    AU - Walkinshaw, Malcolm D

    AU - Reid, Graeme A

    AU - Chapman, Stephen K

    N1 - M1 - Article

    PY - 2003/11/18

    Y1 - 2003/11/18

    N2 - An examination of the X-ray structure of the soluble fumarate reductase from Shewanella frigidimarina [Taylor, P., Pealing, S. L., Reid, G. A., Chapman, S. K., and Walkinshaw, M. D. (1999) Nat. Struct. Biol. 6, 1108-1112] shows the presence of four, bis-His-ligated, c-type hemes and one flavin adenine dinucleotide, FAD. The heme groups provide a "molecular wire" for the delivery of electrons to the FAD. Heme IV is closest to the FAD (7.4 A from heme methyl to FAD C7), and His61, a ligand to heme IV, is also close (8.4 A to FAD C7). Electron delivery to the FAD from the heme groups must proceed via heme IV, as hemes I-III are too far from the FAD for feasible electron transfer. To examine the importance of heme IV and its ligation for enzyme function, we have substituted His61 with both methionine and alanine. Here we describe the crystallographic, kinetic, and electrochemical characterization of the H61M and H61A mutant forms of the Shewanella fumarate reductase. The crystal structures of these mutant forms of the enzyme have been determined to 2.1 and 2.2 A resolution, respectively. Substitution of His61 with alanine results in heme IV having only one protein ligand (His86), the sixth coordination position being occupied by an acetate ion derived from the crystal cryoprotectant solution. In the structure of the H61M enzyme, Met61 is found not to ligate the heme iron, a role that is taken by a water molecule. Apart from these features, there are no significant structural alterations as a result of either substitution. Both the H61M-Fcc(3) and H61A-Fcc(3) mutant enzymes are catalytically active but exhibit marked decreases in the value of k(cat) for fumarate reduction with respect to that of the wild type (5- and 10-fold lower, respectively). There is also a significant shift in the pK(a) values for the mutant enzymes, from 7.5 for the wild type to 8.26 for H61M and 9.29 for H61A. The fumarate reductase activity of both mutant enzymes can be recovered to approximately 80% of that seen for the wild type by the addition of exogenous imidazole. In the case of H61A, recovery of activity is also accompanied by a shift of the pK(a) from 9.29 to 7.46 (close, and within experimental error, to that for the wild type). Pre-steady-state kinetic measurements show clearly that rate constants for the fumarate dependent reoxidation of the heme groups are adversely affected by the mutations. The solvent isotope effect for fumarate reduction in the wild-type enzyme has a value of 8.0, indicating that proton delivery is substantially rate limiting. This value falls to 5.6 and 2.2 for the H61M and H61A mutants, respectively, indicating that electron transfer, rather than proton transfer, is becoming more rate-limiting in the mutant enzymes.

    AB - An examination of the X-ray structure of the soluble fumarate reductase from Shewanella frigidimarina [Taylor, P., Pealing, S. L., Reid, G. A., Chapman, S. K., and Walkinshaw, M. D. (1999) Nat. Struct. Biol. 6, 1108-1112] shows the presence of four, bis-His-ligated, c-type hemes and one flavin adenine dinucleotide, FAD. The heme groups provide a "molecular wire" for the delivery of electrons to the FAD. Heme IV is closest to the FAD (7.4 A from heme methyl to FAD C7), and His61, a ligand to heme IV, is also close (8.4 A to FAD C7). Electron delivery to the FAD from the heme groups must proceed via heme IV, as hemes I-III are too far from the FAD for feasible electron transfer. To examine the importance of heme IV and its ligation for enzyme function, we have substituted His61 with both methionine and alanine. Here we describe the crystallographic, kinetic, and electrochemical characterization of the H61M and H61A mutant forms of the Shewanella fumarate reductase. The crystal structures of these mutant forms of the enzyme have been determined to 2.1 and 2.2 A resolution, respectively. Substitution of His61 with alanine results in heme IV having only one protein ligand (His86), the sixth coordination position being occupied by an acetate ion derived from the crystal cryoprotectant solution. In the structure of the H61M enzyme, Met61 is found not to ligate the heme iron, a role that is taken by a water molecule. Apart from these features, there are no significant structural alterations as a result of either substitution. Both the H61M-Fcc(3) and H61A-Fcc(3) mutant enzymes are catalytically active but exhibit marked decreases in the value of k(cat) for fumarate reduction with respect to that of the wild type (5- and 10-fold lower, respectively). There is also a significant shift in the pK(a) values for the mutant enzymes, from 7.5 for the wild type to 8.26 for H61M and 9.29 for H61A. The fumarate reductase activity of both mutant enzymes can be recovered to approximately 80% of that seen for the wild type by the addition of exogenous imidazole. In the case of H61A, recovery of activity is also accompanied by a shift of the pK(a) from 9.29 to 7.46 (close, and within experimental error, to that for the wild type). Pre-steady-state kinetic measurements show clearly that rate constants for the fumarate dependent reoxidation of the heme groups are adversely affected by the mutations. The solvent isotope effect for fumarate reduction in the wild-type enzyme has a value of 8.0, indicating that proton delivery is substantially rate limiting. This value falls to 5.6 and 2.2 for the H61M and H61A mutants, respectively, indicating that electron transfer, rather than proton transfer, is becoming more rate-limiting in the mutant enzymes.

    U2 - 10.1021/bi030159z

    DO - 10.1021/bi030159z

    M3 - Article

    VL - 42

    SP - 13160

    EP - 13169

    JO - Biochemistry

    JF - Biochemistry

    SN - 0006-2960

    IS - 45

    ER -

    Rothery EL, Mowat CG, Miles CS, Walkinshaw MD, Reid GA, Chapman SK. Histidine 61: an important heme ligand in the soluble fumarate reductase from Shewanella frigidimarina. Biochemistry. 2003 Nov 18;42(45):13160-13169. https://doi.org/10.1021/bi030159z