Abstract
Scalable quantum networking requires quantum systems with quantum processing capabilities. Solid state spin systems with reliable spin–optical interfaces are a leading hardware in this regard. However, available systems suffer from large electron–phonon interaction or fast spin dephasing. Here, we demonstrate that the negatively charged silicon-vacancy centre in silicon carbide is immune to both drawbacks. Thanks to its 4A2 symmetry in ground and excited states, optical resonances are stable with near-Fourier-transform-limited linewidths, allowing exploitation of the spin selectivity of the optical transitions. In combination with millisecond-long spin coherence times originating from the high-purity crystal, we demonstrate high-fidelity optical initialization and coherent spin control, which we exploit to show coherent coupling to single nuclear spins with ∼1 kHz resolution. The summary of our findings makes this defect a prime candidate for realising memory-assisted quantum network applications using semiconductor-based spin-to-photon interfaces and coherently coupled nuclear spins.
Original language | English |
---|---|
Article number | 1954 |
Journal | Nature Communications |
Volume | 10 |
DOIs | |
Publication status | Published - 26 Apr 2019 |
ASJC Scopus subject areas
- General Chemistry
- General Biochemistry,Genetics and Molecular Biology
- General Physics and Astronomy
Fingerprint
Dive into the research topics of 'High-fidelity spin and optical control of single silicon vacancy centres in silicon carbide'. Together they form a unique fingerprint.Profiles
-
Cristian Bonato
- School of Engineering & Physical Sciences - Professor
- School of Engineering & Physical Sciences, Institute of Photonics and Quantum Sciences - Professor
Person: Academic (Research & Teaching)