Abstract
Quantum key distribution (QKD) systems often rely on polarization of light for encoding, thus limiting the amount of information that can be sent per photon and placing tight bounds on the error rates that such a system can tolerate. Here we describe a proof-of-principle experiment that indicates the feasibility of high-dimensional QKD based on the transverse structure of the light field allowing for the transfer of more than 1 bit per photon. Our implementation uses the orbital angular momentum (OAM) of photons and the corresponding mutually unbiased basis of angular position (ANG). Our experiment uses a digital micro-mirror device for the rapid generation of OAM and ANG modes at 4 kHz, and a mode sorter capable of sorting single photons based on their OAM and ANG content with a separation efficiency of 93%. Through the use of a seven-dimensional alphabet encoded in the OAM and ANG bases, we achieve a channel capacity of 2.05 bits per sifted photon. Our experiment demonstrates that, in addition to having an increased information capacity, multilevel QKD systems based on spatial-mode encoding can be more resilient against intercept-resend eavesdropping attacks.
Original language | English |
---|---|
Article number | 033033 |
Journal | New Journal of Physics |
Volume | 17 |
DOIs | |
Publication status | Published - 20 Mar 2015 |
Fingerprint
Dive into the research topics of 'High-dimensional quantum cryptography with twisted light'. Together they form a unique fingerprint.Profiles
-
Mehul Malik
- School of Engineering & Physical Sciences - Professor
- School of Engineering & Physical Sciences, Institute of Photonics and Quantum Sciences - Professor
Person: Academic (Research & Teaching)