Abstract
Process synthesis is one of the most important activities in chemical process design. In the past decades, development in process synthesis has been dominantly targeted for petrochemical or petroleum-based industries. However, in recent years, the industries have been searching for alternative sustainable resources to replace fossil fuels. Biomass has been identified as one of the most promising alternatives. Biomass can be used to produce fuel, energy and chemicals in an integrated biorefinery. In order to synthesise and design an integrated biorefinery, many researchers have extended and modified current available process synthesis approaches, in which they have been mainly developed based on petrochemical industries. Although these reported approaches are useful in designing the integrated biorefinery; however, they are mainly mathematical optimisation approaches which require either high computational efforts or intensive modelling of the system. Based on the literature, there are limited works on developing hierarchical approach that can provide guidance for designer to synthesise an integrated biorefinery systemically. Due to the diversification in compositions and characteristics of biomass feedstock, as well as limited physical and chemical properties of biomass, additional considerations are required to modify the current available hierarchical approaches for integrated biorefinery synthesis. In this work, a well-established hierarchical decomposition approach is extended for synthesis of integrated biorefinery. The revised hierarchical approach now includes a new level, which is known as "characterisation and standardisation of biomass". Besides, appropriate modifications are also made on the other levels (i.e. level 2-6) to accommodate the requirements of synthesis of integrated biorefinery.
Original language | English |
---|---|
Pages (from-to) | 1693-1698 |
Number of pages | 6 |
Journal | Chemical Engineering Transactions |
Volume | 45 |
DOIs | |
Publication status | Published - Oct 2015 |
ASJC Scopus subject areas
- General Chemical Engineering