Hierarchical creep cavity formation in an ultramylonite and implications for phase mixing

James Gilgannon, Florian Fusseis, Luca Menegon, Klaus Regenauer-Lieb, Jim Buckman

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)
44 Downloads (Pure)


Establishing models for the formation of well-mixed polyphase domains in ultramylonites is difficult because the effects of large strains and thermo-hydro-chemo-mechanical feedbacks can obscure the transient phenomena that may be responsible for domain production. We use scanning electron microscopy and nanotomography to offer critical insights into how the microstructure of a highly deformed quartzo-feldspathic ultramylonite evolved. The dispersal of monomineralic quartz domains in the ultramylonite is interpreted to be the result of the emergence of synkinematic pores, called creep cavities. The cavities can be considered the product of two distinct mechanisms that formed hierarchically: Zener–Stroh cracking and viscous grain-boundary sliding. In initially thick and coherent quartz ribbons deforming by grain-size-insensitive creep, cavities were generated by the Zener–Stroh mechanism on grain boundaries aligned with the YZ plane of finite strain. The opening of creep cavities promoted the ingress of fluids to sites of low stress. The local addition of a fluid lowered the adhesion and cohesion of grain boundaries and promoted viscous grain-boundary sliding. With the increased contribution of viscous grain-boundary sliding, a second population of cavities formed to accommodate strain incompatibilities. Ultimately, the emergence of creep cavities is interpreted to be responsible for the transition of quartz domains from a grain-size-insensitive to a grain-size-sensitive rheology.
Original languageEnglish
Pages (from-to)1193-1209
Number of pages17
JournalSolid Earth
Publication statusPublished - 19 Dec 2017


Dive into the research topics of 'Hierarchical creep cavity formation in an ultramylonite and implications for phase mixing'. Together they form a unique fingerprint.

Cite this