Abstract
We derive the heat trace asymptotics of the generator of subordinate Brownian motion on Euclidean space for a class of Laplace exponents. The terms in the asymptotic expansion can be computed to arbitrary order and depend both on the geometry of Euclidean space and the short-time behaviour of the process. If the Blumenthal-Getoor index of the process is rational, then the asymptotics may contain logarithmic terms. The key assumption is the existence of a suitable density for the Lévy measure of the subordinator. The analysis is highly explicit.
Original language | English |
---|---|
Pages (from-to) | 331-354 |
Number of pages | 24 |
Journal | Potential Analysis |
Volume | 44 |
Issue number | 2 |
Early online date | 24 Oct 2015 |
DOIs | |
Publication status | Published - Feb 2016 |