Green and Integrated Wearable Electrochemical Sensor for Chloride Detection in Sweat

Francesco Lopresti, Bernardo Patella, Vito Divita, Claudio Zanca, Luigi Botta, Norbert Radacsi, Alan O'Riordan, Giuseppe Aiello, Maïwenn Kersaudy-Kerhoas, Rosalinda Inguanta, Vincenzo La Carrubba

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
2 Downloads (Pure)

Abstract

Wearable sensors for sweat biomarkers can provide facile analyte capability and monitoring for several diseases. In this work, a green wearable sensor for sweat absorption and chloride sensing is presented. In order to produce a sustainable device, polylactic acid (PLA) was used for both the substrate and the sweat absorption pad fabrication. The sensor material for chloride detection consisted of silver-based reference, working, and counter electrodes obtained from upcycled compact discs. The PLA substrates were prepared by thermal bonding of PLA sheets obtained via a flat die extruder, prototyped in single functional layers via CO2 laser cutting, and bonded via hot-press. The effect of cold plasma treatment on the transparency and bonding strength of PLA sheets was investigated. The PLA membrane, to act as a sweat absorption pad, was directly deposited onto the membrane holder layer by means of an electrolyte-assisted electrospinning technique. The membrane adhesion capacity was investigated by indentation tests in both dry and wet modes. The integrated device made of PLA and silver-based electrodes was used to quantify chloride ions. The calibration tests revealed that the proposed sensor platform could quantify chloride ions in a sensitive and reproducible way. The chloride ions were also quantified in a real sweat sample collected from a healthy volunteer. Therefore, we demonstrated the feasibility of a green and integrated sweat sensor that can be applied directly on human skin to quantify chloride ions.

Original languageEnglish
Article number8223
JournalSensors
Volume22
Issue number21
Early online date27 Oct 2022
DOIs
Publication statusPublished - Nov 2022

Keywords

  • chloride detection
  • electrochemical sensors
  • electrolyte assisted electrospinning
  • environmental-friendly
  • laser cutting
  • wearable sensor

ASJC Scopus subject areas

  • Analytical Chemistry
  • Information Systems
  • Biochemistry
  • Atomic and Molecular Physics, and Optics
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Green and Integrated Wearable Electrochemical Sensor for Chloride Detection in Sweat'. Together they form a unique fingerprint.

Cite this