TY - JOUR
T1 - Gravitational parameter estimation in a waveguide
AU - Doukas, Jason
AU - Westwood, Luke
AU - Faccio, Daniele
AU - Di Falco, Andrea
AU - Fuentes, Ivette
PY - 2014/7/8
Y1 - 2014/7/8
N2 - We investigate the intrinsic uncertainty in the accuracy to which a static spacetime can be measured from scattering experiments. In particular, we focus on the Schwarzschild black hole and a spatially kinked metric that has some mathematical resemblance to an expanding universe. Under selected conditions we find that the scattering problem can be framed in terms of a lossy bosonic channel, which allows us to identify shot-noise scaling as the ultimate scaling limit to the estimation of the spacetimes. Fock state probes with particle counting measurements attain this ultimate scaling limit and the scaling constants for each spacetime are computed and compared to the practical strategies of coherent state probes with heterodyne and homodyne measurements. A promising avenue to analyze the quantum limit of the analogue spacetimes in optical waveguides is suggested.
AB - We investigate the intrinsic uncertainty in the accuracy to which a static spacetime can be measured from scattering experiments. In particular, we focus on the Schwarzschild black hole and a spatially kinked metric that has some mathematical resemblance to an expanding universe. Under selected conditions we find that the scattering problem can be framed in terms of a lossy bosonic channel, which allows us to identify shot-noise scaling as the ultimate scaling limit to the estimation of the spacetimes. Fock state probes with particle counting measurements attain this ultimate scaling limit and the scaling constants for each spacetime are computed and compared to the practical strategies of coherent state probes with heterodyne and homodyne measurements. A promising avenue to analyze the quantum limit of the analogue spacetimes in optical waveguides is suggested.
UR - https://www.scopus.com/pages/publications/84904342905
U2 - 10.1103/PhysRevD.90.024022
DO - 10.1103/PhysRevD.90.024022
M3 - Article
AN - SCOPUS:84904342905
SN - 1550-7998
VL - 90
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 2
ER -