TY - JOUR
T1 - Gradient descent algorithm to optimize the offshore scale squeeze treatments
AU - Azari, Vahid
AU - Vazquez, Oscar
AU - Mackay, Eric
AU - Sorbie, Ken
AU - Jordan, Myles
N1 - Funding Information:
The authors gratefully thank the PhD scholarship support from the Heriot-Watt University , James Watt Scholarship . We also acknowledge ChampionX for permission to publish this work. The help and co-operation of Clare Johnston and Louise Sutherland from ChampionX are also acknowledged for helpful discussions and constructive guidance.
Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2022/1
Y1 - 2022/1
N2 - Scale deposition is one of the serious oilfield chemical issues which may lead to a range of downhole and production problems, including the reduction of well productivity index. Scale Inhibitor (SI) squeeze treatments are one of the most common techniques which are applied to prevent downhole scaling in production wells. A treatment typically consists of four stages, (i) a preflush, to condition the rock surface; (ii) a main treatment, where a batch of high concentration inhibitor is bullheaded into the formation; (iii) an overflush, to displace the scale inhibitor slug deeper into the near-well formation, and (iv) a shut-in stage to allow further inhibitor retention before putting the well back on production. During this backflow period, scale inhibitor is released from the rock surface into the produced water, and the scale deposition is prevented if the inhibitor concentration is above some specified Minimum Inhibitor Concentration (MIC). Due to logistic constraints in offshore wells, it is often required that the scale protection afforded by a squeeze treatment should last for some fixed design lifetime until the next treatment becomes available. For example, in the North Sea sector, well operations are often based on an annual treatment design. This paper presents a methodology to optimize the squeeze treatment design for a fixed target lifetime and this is applied for two offshore well squeeze treatments. This approach allows us to account for the operational constraints in the squeeze optimization process to treat a fixed volume of produced water, while minimizing the inhibitor neat volume and the total pumping time. A sensitivity study was performed on the inhibitor concentration, where the results showed that deploying a smaller inhibitor slug but with higher concentration is more effective than a larger slug with lower concentration, assuming a fixed volume of inhibitor and injected water. Therefore, it is recommended that the inhibitor is deployed at the maximum possible concentration, while avoiding the potential for any formation damage. Considering the same inhibitor slug (volume and concentration), this study suggests that the squeeze lifetime continuously increases with the overflush volume. This implies that the lifetime function is differentiable with respect to the overflush, and thus a gradient-based optimization algorithm, specifically the Gradient Descent (GD) may be applied to find the exact overflush volume resulting in the target lifetime. Employing this procedure for a wide range of main treatment volumes allows us to calculate the squeeze “Iso-Lifetime” curve which represents all the possible squeeze designs for the target lifetime. Thereafter, from the iso-lifetime designs, the CPB value (total cost of squeeze per treated barrel of water produced) can be minimized to find the most optimum squeeze design. This approach is shown to result in the optimum scale inhibitor squeeze treatment strategy in the long-term.
AB - Scale deposition is one of the serious oilfield chemical issues which may lead to a range of downhole and production problems, including the reduction of well productivity index. Scale Inhibitor (SI) squeeze treatments are one of the most common techniques which are applied to prevent downhole scaling in production wells. A treatment typically consists of four stages, (i) a preflush, to condition the rock surface; (ii) a main treatment, where a batch of high concentration inhibitor is bullheaded into the formation; (iii) an overflush, to displace the scale inhibitor slug deeper into the near-well formation, and (iv) a shut-in stage to allow further inhibitor retention before putting the well back on production. During this backflow period, scale inhibitor is released from the rock surface into the produced water, and the scale deposition is prevented if the inhibitor concentration is above some specified Minimum Inhibitor Concentration (MIC). Due to logistic constraints in offshore wells, it is often required that the scale protection afforded by a squeeze treatment should last for some fixed design lifetime until the next treatment becomes available. For example, in the North Sea sector, well operations are often based on an annual treatment design. This paper presents a methodology to optimize the squeeze treatment design for a fixed target lifetime and this is applied for two offshore well squeeze treatments. This approach allows us to account for the operational constraints in the squeeze optimization process to treat a fixed volume of produced water, while minimizing the inhibitor neat volume and the total pumping time. A sensitivity study was performed on the inhibitor concentration, where the results showed that deploying a smaller inhibitor slug but with higher concentration is more effective than a larger slug with lower concentration, assuming a fixed volume of inhibitor and injected water. Therefore, it is recommended that the inhibitor is deployed at the maximum possible concentration, while avoiding the potential for any formation damage. Considering the same inhibitor slug (volume and concentration), this study suggests that the squeeze lifetime continuously increases with the overflush volume. This implies that the lifetime function is differentiable with respect to the overflush, and thus a gradient-based optimization algorithm, specifically the Gradient Descent (GD) may be applied to find the exact overflush volume resulting in the target lifetime. Employing this procedure for a wide range of main treatment volumes allows us to calculate the squeeze “Iso-Lifetime” curve which represents all the possible squeeze designs for the target lifetime. Thereafter, from the iso-lifetime designs, the CPB value (total cost of squeeze per treated barrel of water produced) can be minimized to find the most optimum squeeze design. This approach is shown to result in the optimum scale inhibitor squeeze treatment strategy in the long-term.
KW - Gradient descent algorithm
KW - Iso-lifetime designs
KW - Oilfield scale
KW - Squeeze treatment
KW - Treatment optimization
UR - http://www.scopus.com/inward/record.url?scp=85114417582&partnerID=8YFLogxK
U2 - 10.1016/j.petrol.2021.109469
DO - 10.1016/j.petrol.2021.109469
M3 - Article
AN - SCOPUS:85114417582
SN - 0920-4105
VL - 208
JO - Journal of Petroleum Science and Engineering
JF - Journal of Petroleum Science and Engineering
IS - Part B
M1 - 109469
ER -