Abstract
Self-phase modulation (SPM) of light pulses is found to occur strongly, at low incident intensities, in the coupling of light with superconductors. We develop a theory from a synthesis of the time-dependent Ginzburg-Landau (TDGL) equation and basic electrodynamics which shows the strongly non-linear phase accumulated in the interaction. Unusually, the SPM of the pulse in this system is found to be highly asymmetric, producing a strongly redshifted spectrum when interacting with a superconducting thin film, and it develops in just a few nanometers of propagation. In this paper we present theoretical results and simulations in the THz regime, for both hyperbolic secant and supergaussian-shaped pulses.
Original language | English |
---|---|
Article number | 046001 |
Journal | Materials Research Express |
Volume | 5 |
Issue number | 4 |
DOIs | |
Publication status | Published - 13 Apr 2018 |
Keywords
- nonlinear optics
- pulse propagation
- self-phase modulation
- superconductivity
- thin films
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Biomaterials
- Surfaces, Coatings and Films
- Polymers and Plastics
- Metals and Alloys