Abstract
Although ultraviolet (UV) light is important in many areas of science and technology, there are very few if any lasers capable of delivering wavelength-tunable ultrashort UV pulses at high repetition rates. Here we report the generation of deep UV laser pulses at megahertz repetition rates and microjoule energies by means of dispersive wave (DW) emission from self-compressed solitons in gas-filled single-ring hollow-core photonic crystal fiber (SR-PCF). Pulses from an ytterbium fiber laser (∼300 fs∼300 fs) are first compressed to <25 fs<25 fs in a SR-PCF-based nonlinear compression stage and subsequently used to pump a second SR-PCF stage for broadband DW generation in the deep UV. The UV wavelength is tunable by selecting the gas species and the pressure. Through rigorous optimization of the system, in particular employing a large-core fiber filled with light noble gases, we achieve 1 μJ pulse energies in the deep UV, which is more than 10 times higher, at average powers more than four orders of magnitude greater (reaching 1 W) than previously demonstrated, with only 20 μJ pulses from the pump laser.
Original language | English |
---|---|
Pages (from-to) | 1272-1276 |
Number of pages | 5 |
Journal | Optica |
Volume | 4 |
Issue number | 10 |
DOIs | |
Publication status | Published - 20 Oct 2017 |
Fingerprint
Dive into the research topics of 'Generation of micro-J pulses in the deep UV at MHz repetition rates'. Together they form a unique fingerprint.Profiles
-
John C. Travers
- School of Engineering & Physical Sciences - Professor
- School of Engineering & Physical Sciences, Institute of Photonics and Quantum Sciences - Professor
Person: Academic (Research & Teaching)