Abstract
We characterize a periodically poled KTP crystal that produces an entangled, two-mode, squeezed state with orthogonal polarizations, nearly identical, factorizable frequency modes, and few photons in unwanted frequency modes. We focus the pump beam to create a nearly circular joint spectral probability distribution between the two modes. After disentangling the two modes, we observe Hong-Ou-Mandel interference with a raw (background corrected) visibility of 86% (95%) when an 8.6 nm bandwidth spectral filter is applied. We measure second order photon correlations of the entangled and disentangled squeezed states with both superconducting nanowire single-photon detectors and photon-number-resolving transition-edge sensors. Both methods agree and verify that the detected modes contain the desired photon number distributions. (C) 2011 Optical Society of America
Original language | English |
---|---|
Pages (from-to) | 24434-24447 |
Number of pages | 14 |
Journal | Optics Express |
Volume | 19 |
Issue number | 24 |
DOIs | |
Publication status | Published - 21 Nov 2011 |