Abstract
Alkenols are commercially important chemicals employed in the pharmaceutical and agro-food industries. The conventional production route via liquid phase (batch) alkynol hydrogenation suffers from the requirement for separation/purification unit operations to extract the target product. We have examined, for the first time, the continuous gas phase hydrogenation (P = 1 atm; T = 373 K) of primary (3-butyn-1-ol), secondary (3-butyn-2-ol) and tertiary (2-methyl-3-butyn-2-ol) C4 alkynols using a 1.2% wt. Pd/Al2O3 catalyst. Post-TPR, the catalyst exhibited a narrow distribution of Pdδ- (based on XPS) nanoparticles in the size range 1-6 nm (mean size = 3 nm from STEM). Hydrogenation of the primary and secondary alkynols was observed to occur in a stepwise fashion (-C≡C- → -C=C- → -C-C-) while alkanol formation via direct -C≡C- → -C-C- bond transformation was in evidence in the conversion of 2-methyl-3-butyn-2-ol. Ketone formation via double bond migration was promoted to a greater extent in the transformation of secondary (vs. primary) alkynol. Hydrogenation rate increased in the order primary < secondary < tertiary. The selectivity and reactivity trends are accounted for in terms of electronic effects.
Original language | English |
---|---|
Article number | 924 |
Number of pages | 12 |
Journal | Catalysts |
Volume | 9 |
Issue number | 11 |
DOIs | |
Publication status | Published - 6 Nov 2019 |
Keywords
- 2-methyl-3-butyn-2-ol
- 3-butyn-1-ol
- 3-butyn-2-ol
- Alkenols
- Alkynols
- Gas phase hydrogenation
- Pd/Al O
- Triple bond electron charge
ASJC Scopus subject areas
- Catalysis
- Physical and Theoretical Chemistry