Abstract
We develop an analytical approach to scalar field theory on the fuzzy sphere based on considering a perturbative expansion of the kinetic term. This expansion allows us to integrate out the angular degrees of freedom in the hermitian matrices encoding the scalar field. The remaining model depends only on the eigenvalues of the matrices and corresponds to a multitrace hermitian matrix model. Such a model can be solved by standard techniques as e.g. the saddle-point approximation. We evaluate the perturbative expansion up to second order and present the one-cut solution of the saddle-point approximation in the large N limit. We apply our approach to a model which has been proposed as an appropriate regularization of scalar field theory on the plane within the framework of fuzzy geometry.
Original language | English |
---|---|
Journal | Journal of High Energy Physics |
Volume | 2007 |
DOIs | |
Publication status | Published - Aug 2007 |