Abstract
This study investigated functional enhancement strategies for whole egg (WE), egg yolk (EY) and whey protein concentrate (WPC) with a view to reducing their required concentrations in formulations and the resulting environmental footprint. WE and EY underwent a combined phospholipase PLA2 and controlled heat treatment (WE2 and EY2) while WPC was partially-denatured via controlled heating (pdWPC). WE2 and EY2 samples were mixed with pdWPC and were also control-heated (h) with WPC. WE2-WPC(h) foams proved more stable than their untreated controls. WE2, EY2 and EY2-pdWPC showed higher emulsifying properties than their untreated controls. pdWPC, EY2 and EY2-WPC(h) hydrogels proved more viscoelastic than their untreated controls. EY2 and EY2-WPC(h) displayed an additional 45 kDa protein band, which could correspond to surface-active apoproteins released from lipoproteins. This work highlighted the potential to enhance WE, EY and WPC functionality via combined partial denaturation treatments and via synergy between WPC and WE or EY when co-processed.
Original language | English |
---|---|
Article number | 101895 |
Journal | Food Bioscience |
Volume | 49 |
Early online date | 12 Jul 2022 |
DOIs | |
Publication status | Published - Oct 2022 |
Keywords
- Denaturation
- Egg
- Functionality
- Synergy
- WPC
ASJC Scopus subject areas
- Food Science
- Biochemistry