Abstract
Fake news spreading, with the aim of manipulating individuals’ perceptions of facts, is now recognized as a major problem in many democratic societies. Yet, to date, little has been understood about how fake news spreads on social networks, what the influence of the education level of individuals is, when fake news is effective in influencing public opinion, and what interventions might be successful in mitigating their effect. In this paper, starting from the recently introduced kinetic multi-agent model with competence by the first two authors, we propose to derive reduced-order models through the notion of social closure in the mean-field approximation that has its roots in the classical hydrodynamic closure of kinetic theory. This approach allows to obtain simplified models in which the competence and learning of the agents maintain their role in the dynamics and, at the same time, the structure of such models is more suitable to be interfaced with data-driven applications. Examples of different Twitter-based test cases are described and discussed.
Original language | English |
---|---|
Article number | 68 |
Journal | Partial Differential Equations and Applications |
Volume | 3 |
Issue number | 6 |
Early online date | 3 Oct 2022 |
DOIs | |
Publication status | Published - Dec 2022 |
Keywords
- Agent-based models
- Competence
- Data uncertainty
- Fake news spreading
- Kinetic models
- Learning dynamics
- Social closure
ASJC Scopus subject areas
- Analysis
- Numerical Analysis
- Computational Mathematics
- Applied Mathematics