Frictional Behavior Downdip Along the Subduction Megathrust: Insights From Laboratory Experiments on Exhumed Samples at In Situ Conditions

S. A. M. den Hartog*, C. Marone, D. M. Saffer

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


Subduction megathrusts exhibit a spectrum of slip modes, including catastrophic earthquakes. Although the mechanical and frictional properties of materials sampled from subduction zones have been studied extensively, few datasets have been collected for compositions and at pressure and temperature conditions representative of those in situ. The Nankai subduction zone in southwest Japan is a well-studied margin, and abundant data provide an opportunity to advance our understanding of fault and earthquake physics. Here, we use samples exhumed in the Shimanto and Sanbagawa Belts on Shikoku Island of southwest Japan that represent analogs for materials along the present-day megathrust at depths of ∼5–>25 km, and we shear these at their peak in situ pressure-temperature (P-T) conditions. Effective normal stresses range from 28 to 192 MPa, and temperatures from 105°C to 470°C. We used pore fluid pressures of 45–240 MPa, corresponding to fluid overpressure ratios λ of 0.65 and 0.90. Slip velocities of 0.1–100 μm/s were used, in order to focus on the nucleation of instability and earthquakes. We found predominantly velocity-strengthening (inherently stable) behavior under all conditions for λ = 0.65. For λ = 0.90, velocity-weakening behavior was observed at 350°C, with velocity-strengthening behavior at lower and higher temperatures. The rate/state frictional stability parameter (a-b) increases with slip velocity at temperatures up to ∼200°C and remains constant or decreases with slip velocity at higher temperatures. Overall, our results demonstrate the potentially important roles of both temperature and slip velocity in controlling the distribution of stress and frictional rheology along subduction thrusts.

Original languageEnglish
Article numbere2022JB024435
JournalJournal of Geophysical Research: Solid Earth
Issue number1
Early online date30 Dec 2022
Publication statusPublished - Jan 2023


  • experiments
  • frictional behavior
  • in situ conditions
  • megathrust
  • Nankai Trough
  • subduction zone

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science


Dive into the research topics of 'Frictional Behavior Downdip Along the Subduction Megathrust: Insights From Laboratory Experiments on Exhumed Samples at In Situ Conditions'. Together they form a unique fingerprint.

Cite this