Four electrode-based impedimetric biosensors for evaluating cytotoxicity of tamoxifen on cervical cancer cells

Rangadhar Pradhan*, Ashish Kalkal, Shlok Jindal, Gopinath Packirisamy*, Sanjeev Manhas

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)
7 Downloads (Pure)

Abstract

In the current study, novel four electrode-based impedimetric biosensors have been fabricated using photolithography techniques and utilized to evaluate the cytotoxicity of tamoxifen on cervical cancer cell lines. The cell impedance was measured employing the electric cell-substrate impedance sensing (ECIS) method over the frequency range of 100 Hz to 1 MHz. The results obtained from impedimetric biosensors indicate that tamoxifen caused a significant reduction in the number of HeLa cells on the electrode surfaces in a dose-dependent manner. Next, the impedance values recorded by the fabricated biosensors have been compared with the results obtained from the different conventional techniques such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), live-dead cell assay, and flow cytometric analysis to estimate the cytotoxicity of tamoxifen. The impedimetric cytotoxicity of tamoxifen over the growth and proliferation of HeLa cells correlates well with the traditional methods. In addition, the IC50 values obtained from impedimetric data and MTT assay are comparable, signifying that the ECIS technique can be an alternative method to assess the cytotoxicity of different novel drugs. The working principle of the biosensor has been examined by scanning electron microscopy, indicating the detachment of cells from gold surfaces in a dose-dependent manner, signifying the decrease in impedance at higher drug doses.
Original languageEnglish
Pages (from-to)798-806
Number of pages9
JournalRSC Advances
Volume11
Issue number2
Early online date4 Jan 2021
DOIs
Publication statusPublished - 2021

Fingerprint

Dive into the research topics of 'Four electrode-based impedimetric biosensors for evaluating cytotoxicity of tamoxifen on cervical cancer cells'. Together they form a unique fingerprint.

Cite this