Abstract
Floods accompanied by thunderstorms in developed cities are hazardous, causing damage to infrastructure. To secure infrastructure, it is important to employ an integrated approach, combining remote sensing, GIS and precipitation data. The model was developed based on the estimation of event-based runoff and investigated the relationship between runoff and impervious surfaces. The novel approach of combining Hydrologic Engineering Center’s River Analysis System (HEC-GeoRAS) along with satellite imagery was utilized, where spatial data was combined with real-time values to run the model. As a first step, the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model was fed with information about precipitation, slope, soil type, as well as land use and land cover. The results reveal that the subbasins of Deira, Nief and Jumeirah have the largest impervious area and, thus, a higher probability of flood occurrence. The model was calibrated and validated using previous runoff events and by comparing observed and simulated streak flow and peak discharge against those reported in previous studies. It was found that the model is efficient and can be used in similar regions.
Original language | English |
---|---|
Article number | 25039 |
Journal | Scientific Reports |
Volume | 14 |
Early online date | 23 Oct 2024 |
DOIs | |
Publication status | Published - 23 Oct 2024 |
Keywords
- Curve number (CN)
- DEM
- HEC-HMS model
- Dubai
- GIS
- Floods, UAE
- Remote sensing