Finite element simulation of projectile perforation through a ballistic fabric

Danmei Sun, Xiaogang Chen, Eluned Lewis , Garry Wells

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

An FE model is developed to simulate the ballistic impact of a flat-faced cylindrical projectile onto a flexible plain woven fabric made from Kevlar. The geometric model of the fabric was made by an in-house CAD programme known as UniverWeave© on the specification of actual structural parameters of a fabric. Commercial software package ABAQUS was used to simulate the projectile-fabric impact process assuming that the constituent yarns are elastic and plastic when loaded. Comparison between the experimental and the simulated results revealed that the developed model for projectile-fabric impact using ABAQUS/Explicit is effective to simulate the ballistic impact process with high accuracy. The dynamic mechanisms of the impacted fabric were studied. It showed that the projectile lost its velocity quickly at the beginning and then decreased slowly. The cone formed in the backface of the impacted fabric is virtually linear with respect to time. The cone radius increased rapidly at the very beginning of the impact and less significant afterwards. A smaller cone base radius was found to a higher velocity impacted fabric. It also has been found that the main forms of energy absorption are the kinetic energy of the cone, the plastic and elastic energy of the impacted fabric. Furthermore, it is believed that a specified fabric can be designed and engineered against a certain level of threat based on the finding that there exist a specific impact energy under which the fabric absorbs maximum projectile impact energy.
Original languageEnglish
Pages (from-to)68-78
JournalTextile Research Journal
Volume83
Issue number14
Early online date22 Nov 2012
DOIs
Publication statusPublished - 2013

Keywords

  • ballistic impact
  • explicit numerical modelling
  • impact dynamics

Fingerprint

Dive into the research topics of 'Finite element simulation of projectile perforation through a ballistic fabric'. Together they form a unique fingerprint.

Cite this