Abstract
We introduce a pseudoisation method to upscale polymer flooding in order to capture the flow behaviour of fine scale models. This method is also designed to improve the predictability of pressure profiles during this process. This method controls the numerical dispersion of coarse grid models so that we are able to reproduce the flow behaviour of the fine scale model.
To upscale polymer flooding, three levels of analysis are required such that we need to honour (a) the fractional flow solution, (b) the water and oil mobility and (c) appropriate upscaling of single phase flow. The outcome from this analysis is that a single pseudo relative permeability set that honours the modification that polymer applies to water viscosity modification without explicitly changing it. The shape of relative permeability can be chosen to honour the fractional flow solution of the fine scale using the analytical solution. This can result in a monotonic pseudo relative permeability set and we call it the Fractional-Flow method. To capture the pressure profile as well, individual relative permeability curves must be chosen appropriately for each phase to ensure the correct total mobility. For polymer flooding, changes to the water relative permeability included the changes to water viscosity implicitly thus avoiding the need for inclusion of a polymer solute. We call this type of upscaling as Fractional-Flow-Mobility control method.
Numerical solution of the upscaled models, obtained using this method, were validated against fine scale models for 1D homogenous model and as well as 3D models with randomly distributed permeability for various geological realisations. The recovery factor and water cut matched the fine scale model very well. The pressure profile was reasonably predictable using the Fractional-Flow-Mobility control method.
Both Fractional-Flow and Fractional-flow-Mobility control methods can be calculated in advance without running a fine scale model where the analysis is based on analytical solution even though produced a non-monotonic pseudo relative permeability curve. It simplified the polymer model so that it is much easier and faster to simulate. It offers the opportunity to quickly predict oil and water phase behaviour.
To upscale polymer flooding, three levels of analysis are required such that we need to honour (a) the fractional flow solution, (b) the water and oil mobility and (c) appropriate upscaling of single phase flow. The outcome from this analysis is that a single pseudo relative permeability set that honours the modification that polymer applies to water viscosity modification without explicitly changing it. The shape of relative permeability can be chosen to honour the fractional flow solution of the fine scale using the analytical solution. This can result in a monotonic pseudo relative permeability set and we call it the Fractional-Flow method. To capture the pressure profile as well, individual relative permeability curves must be chosen appropriately for each phase to ensure the correct total mobility. For polymer flooding, changes to the water relative permeability included the changes to water viscosity implicitly thus avoiding the need for inclusion of a polymer solute. We call this type of upscaling as Fractional-Flow-Mobility control method.
Numerical solution of the upscaled models, obtained using this method, were validated against fine scale models for 1D homogenous model and as well as 3D models with randomly distributed permeability for various geological realisations. The recovery factor and water cut matched the fine scale model very well. The pressure profile was reasonably predictable using the Fractional-Flow-Mobility control method.
Both Fractional-Flow and Fractional-flow-Mobility control methods can be calculated in advance without running a fine scale model where the analysis is based on analytical solution even though produced a non-monotonic pseudo relative permeability curve. It simplified the polymer model so that it is much easier and faster to simulate. It offers the opportunity to quickly predict oil and water phase behaviour.
Original language | English |
---|---|
Title of host publication | SPE Europec featured at 82nd EAGE Conference and Exhibition |
Publisher | Society of Petroleum Engineers |
ISBN (Print) | 9781613997918 |
DOIs | |
Publication status | Published - 2021 |
Event | SPE Europec featured at 82nd EAGE Conference and Exhibition 2021 - Amsterdam, Netherlands Duration: 18 Oct 2021 → 21 Oct 2021 |
Conference
Conference | SPE Europec featured at 82nd EAGE Conference and Exhibition 2021 |
---|---|
Abbreviated title | EURO 2021 |
Country/Territory | Netherlands |
City | Amsterdam |
Period | 18/10/21 → 21/10/21 |
ASJC Scopus subject areas
- Geochemistry and Petrology
- Geotechnical Engineering and Engineering Geology
- Fuel Technology