Fast online 3D reconstruction of dynamic scenes from individual single-photon detection events

Research output: Contribution to journalArticle

Abstract

In this paper, we present an algorithm for online 3D reconstruction of dynamic scenes using individual times of arrival (ToA) of photons recorded by single-photon detector arrays. One of the main challenges in 3D imaging using single-photon Lidar is the integration time required to build ToA histograms and reconstruct reliably 3D profiles in the presence of non-negligible ambient illumination. This long integration time also prevents the analysis of rapid dynamic scenes using existing techniques. We propose a new method which does not rely on the construction of ToA histograms but allows, for the first time, individual detection events to be processed online, in a parallel manner in different pixels, while accounting for the intrinsic spatiotemporal structure of dynamic scenes. Adopting a Bayesian approach, a Bayesian model is constructed to capture the dynamics of the 3D profile and an approximate inference scheme based on assumed density filtering is proposed, yielding a fast and robust reconstruction algorithm able to process efficiently thousands to millions of frames, as usually recorded using single-photon detectors. The performance of the proposed method, able to process hundreds of frames per second, is assessed using a series of experiments conducted with static and dynamic 3D scenes and the results obtained pave the way to a new family of real-time 3D reconstruction solutions.
Original languageEnglish
JournalIEEE Transactions on Image Processing
Publication statusAccepted/In press - 28 Oct 2019

Fingerprint

Photons
Detectors
Optical radar
Lighting
Pixels
Imaging techniques
Time of arrival
Experiments

Cite this

@article{265548d058ee44d382a917adab43b05c,
title = "Fast online 3D reconstruction of dynamic scenes from individual single-photon detection events",
abstract = "In this paper, we present an algorithm for online 3D reconstruction of dynamic scenes using individual times of arrival (ToA) of photons recorded by single-photon detector arrays. One of the main challenges in 3D imaging using single-photon Lidar is the integration time required to build ToA histograms and reconstruct reliably 3D profiles in the presence of non-negligible ambient illumination. This long integration time also prevents the analysis of rapid dynamic scenes using existing techniques. We propose a new method which does not rely on the construction of ToA histograms but allows, for the first time, individual detection events to be processed online, in a parallel manner in different pixels, while accounting for the intrinsic spatiotemporal structure of dynamic scenes. Adopting a Bayesian approach, a Bayesian model is constructed to capture the dynamics of the 3D profile and an approximate inference scheme based on assumed density filtering is proposed, yielding a fast and robust reconstruction algorithm able to process efficiently thousands to millions of frames, as usually recorded using single-photon detectors. The performance of the proposed method, able to process hundreds of frames per second, is assessed using a series of experiments conducted with static and dynamic 3D scenes and the results obtained pave the way to a new family of real-time 3D reconstruction solutions.",
author = "Yoann Altmann and Stephen McLaughlin and Davies, {Mike E.}",
year = "2019",
month = "10",
day = "28",
language = "English",
journal = "IEEE Transactions on Image Processing",
issn = "1057-7149",
publisher = "IEEE",

}

TY - JOUR

T1 - Fast online 3D reconstruction of dynamic scenes from individual single-photon detection events

AU - Altmann, Yoann

AU - McLaughlin, Stephen

AU - Davies, Mike E.

PY - 2019/10/28

Y1 - 2019/10/28

N2 - In this paper, we present an algorithm for online 3D reconstruction of dynamic scenes using individual times of arrival (ToA) of photons recorded by single-photon detector arrays. One of the main challenges in 3D imaging using single-photon Lidar is the integration time required to build ToA histograms and reconstruct reliably 3D profiles in the presence of non-negligible ambient illumination. This long integration time also prevents the analysis of rapid dynamic scenes using existing techniques. We propose a new method which does not rely on the construction of ToA histograms but allows, for the first time, individual detection events to be processed online, in a parallel manner in different pixels, while accounting for the intrinsic spatiotemporal structure of dynamic scenes. Adopting a Bayesian approach, a Bayesian model is constructed to capture the dynamics of the 3D profile and an approximate inference scheme based on assumed density filtering is proposed, yielding a fast and robust reconstruction algorithm able to process efficiently thousands to millions of frames, as usually recorded using single-photon detectors. The performance of the proposed method, able to process hundreds of frames per second, is assessed using a series of experiments conducted with static and dynamic 3D scenes and the results obtained pave the way to a new family of real-time 3D reconstruction solutions.

AB - In this paper, we present an algorithm for online 3D reconstruction of dynamic scenes using individual times of arrival (ToA) of photons recorded by single-photon detector arrays. One of the main challenges in 3D imaging using single-photon Lidar is the integration time required to build ToA histograms and reconstruct reliably 3D profiles in the presence of non-negligible ambient illumination. This long integration time also prevents the analysis of rapid dynamic scenes using existing techniques. We propose a new method which does not rely on the construction of ToA histograms but allows, for the first time, individual detection events to be processed online, in a parallel manner in different pixels, while accounting for the intrinsic spatiotemporal structure of dynamic scenes. Adopting a Bayesian approach, a Bayesian model is constructed to capture the dynamics of the 3D profile and an approximate inference scheme based on assumed density filtering is proposed, yielding a fast and robust reconstruction algorithm able to process efficiently thousands to millions of frames, as usually recorded using single-photon detectors. The performance of the proposed method, able to process hundreds of frames per second, is assessed using a series of experiments conducted with static and dynamic 3D scenes and the results obtained pave the way to a new family of real-time 3D reconstruction solutions.

M3 - Article

JO - IEEE Transactions on Image Processing

JF - IEEE Transactions on Image Processing

SN - 1057-7149

ER -