TY - JOUR
T1 - Fabrication of a polyethersulfone/polyethyleneimine porous membrane for sustainable separation of proteins in water media
AU - Talukder, Md. Eman
AU - Alam, Fariya
AU - Talukder, Md. Romon
AU - Mishu, Mst. Monira Rahman
AU - Pervez, Md. Nahid
AU - Song, Hongchen
AU - Russo, Francesca
AU - Galiaono, Francesco
AU - Jiabao, Lan
AU - Stylios, George K.
AU - Figoli, Alberto
AU - Naddeo, Vincenzo
PY - 2023/9/1
Y1 - 2023/9/1
N2 - This paper aims to establish a new sustainable membrane with antifouling properties by developing a structured porous membrane with a honeycomb-like surface fabricated by blending polymers and additives via immersion precipitation and using a thermally induced phase inversion method coupled with exposure time to vapor. The hydrophilic properties, surface charge, and pore size of the membrane were dependent on controlling the blending ratio of polyethersulfone (PES), polyethyleneimine (PEI), and polyvinylpyrrolidone (PVP). The properties of the membranes were characterized, including physical properties, morphology, contact angle, mechanical properties, porosity, and pore size distribution. The membrane filtration performance was evaluated by examining the water permeation, antifouling, and hydrophilic properties of the membranes. The hydrophilic nature of the PES/PEI membrane increased the filtration performance and created a smooth surface that exhibited excellent antifouling ability. Finally, the separation capability of the membranes was evaluated using bovine serum albumin (BSA) and Angelica gigas Nakai (AGN) root solutions. An almost 99.9% rejection rate was achieved for BSA and AGN at 1 bar pressure. The optimized membrane outperforms the commercial membrane with analogous characteristics on both the water flux and molecular weight cut-off (MWCO) of polyethylene glycol (PEG). Due to the controlled pore size (0.0032 to 0.0041 μm) of the honeycomb-like surface, it may be possible to separate pharmacodynamic macromolecules (such as berberine, baicalin, geniposide, and palmatine) for future applications.
AB - This paper aims to establish a new sustainable membrane with antifouling properties by developing a structured porous membrane with a honeycomb-like surface fabricated by blending polymers and additives via immersion precipitation and using a thermally induced phase inversion method coupled with exposure time to vapor. The hydrophilic properties, surface charge, and pore size of the membrane were dependent on controlling the blending ratio of polyethersulfone (PES), polyethyleneimine (PEI), and polyvinylpyrrolidone (PVP). The properties of the membranes were characterized, including physical properties, morphology, contact angle, mechanical properties, porosity, and pore size distribution. The membrane filtration performance was evaluated by examining the water permeation, antifouling, and hydrophilic properties of the membranes. The hydrophilic nature of the PES/PEI membrane increased the filtration performance and created a smooth surface that exhibited excellent antifouling ability. Finally, the separation capability of the membranes was evaluated using bovine serum albumin (BSA) and Angelica gigas Nakai (AGN) root solutions. An almost 99.9% rejection rate was achieved for BSA and AGN at 1 bar pressure. The optimized membrane outperforms the commercial membrane with analogous characteristics on both the water flux and molecular weight cut-off (MWCO) of polyethylene glycol (PEG). Due to the controlled pore size (0.0032 to 0.0041 μm) of the honeycomb-like surface, it may be possible to separate pharmacodynamic macromolecules (such as berberine, baicalin, geniposide, and palmatine) for future applications.
KW - Water Science and Technology
KW - Environmental Engineering
UR - http://www.scopus.com/inward/record.url?scp=85166323915&partnerID=8YFLogxK
U2 - 10.1039/d3ew00108c
DO - 10.1039/d3ew00108c
M3 - Article
SN - 2053-1400
VL - 9
SP - 2323
EP - 2337
JO - Environmental Science: Water Research and Technology
JF - Environmental Science: Water Research and Technology
IS - 9
ER -