Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review

Anton Kuznietsov, Balint Gyevnar, Cheng Wang, Steven Peters, Stefano V. Albrecht

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
101 Downloads (Pure)

Abstract

Artificial Intelligence (AI) shows promising applications for the perception and planning tasks in autonomous driving (AD) due to its superior performance compared to conventional methods. However, highly complex AI systems exacerbate the existing challenge of safety assurance of AD. One way to mitigate this challenge is to utilize explainable AI (XAI) techniques. To this end, we present the first comprehensive systematic literature review of explainable methods for safe and trustworthy AD. We begin by analyzing the requirements for AI in the context of AD, focusing on three key aspects: data, model, and agency. We find that XAI is fundamental to meeting these requirements. Based on this, we explain the sources of explanations in AI and describe a taxonomy of XAI. We then identify five key contributions of XAI for safe and trustworthy AI in AD, which are interpretable design, interpretable surrogate models, interpretable monitoring, auxiliary explanations, and interpretable validation. Finally, we propose a conceptual modular framework called SafeX to integrate the reviewed methods, enabling explanation delivery to users while simultaneously ensuring the safety of AI models.
Original languageEnglish
Pages (from-to)19342-19364
Number of pages23
JournalIEEE Transactions on Intelligent Transportation Systems
Volume25
Issue number12
Early online date14 Oct 2024
DOIs
Publication statusPublished - Dec 2024

Keywords

  • Safety
  • Surveys
  • Explainable AI
  • Stakeholders
  • Planning
  • Taxonomy
  • Standards
  • Monitoring
  • Autonomous vehicles
  • Terminology
  • Autonomous driving
  • autonomous vehicles
  • explainable AI
  • trustworthy AI
  • AI safety

Fingerprint

Dive into the research topics of 'Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review'. Together they form a unique fingerprint.

Cite this