Abstract
Topological quantum matter can be realized by subjecting engineered systems to time-periodic modulations. In analogy with static systems, periodically-driven quantum matter can be topologically classified by topological invariants, whose non-zero value guarantees the presence of robust edge modes. In the high-frequency limit of the drive, topology is described by standard topological invariants, such as Chern numbers. Away from this limit, these topological numbers become irrelevant, and novel topological invariants must be introduced to capture topological edge transport. The corresponding edge modes were coined anomalous topological edge modes, to highlight their intriguing origin. Here, we demonstrate the experimental observation of these topological edge modes in a 2D photonic lattice, where these propagating edge states are shown to coexist with a quasi-localized bulk. Our work opens an exciting route for the exploration of topological physics in time-modulated systems operating away from the high-frequency regime.
Original language | English |
---|---|
Article number | 13918 |
Journal | Nature Communications |
Volume | 8 |
DOIs | |
Publication status | Published - 4 Jan 2017 |
Fingerprint
Dive into the research topics of 'Experimental observation of anomalous topological edge modes in a slowly-driven photonic lattice'. Together they form a unique fingerprint.Datasets
-
Data supporting: Experimental observation of anomalous topological edge modes in a slowly-driven photonic lattice
Mukherjee, S. (Creator), Heriot-Watt University, 25 Nov 2016
DOI: 10.17861/702555b8-d1d4-4e4b-be88-e6a5b9794758
Dataset
Profiles
-
Anna Erika Elisabeth Andersson
- School of Engineering & Physical Sciences - Professor
- School of Engineering & Physical Sciences, Institute of Photonics and Quantum Sciences - Professor
Person: Academic (Research & Teaching)
-
Patrik Ohberg
- School of Engineering & Physical Sciences, Institute of Photonics and Quantum Sciences - Professor
- School of Engineering & Physical Sciences - Professor
Person: Academic (Research & Teaching)